首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyaniline–tin dioxide (PANI-SnO2) composites were prepared by chemical polymerization method, and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Due to the good stability in diluted acidic solution, PANI-SnO2 composites were selected as the catalyst support and second catalyst for methanol electro-oxidation. The electrocatalytic properties of the PANI-SnO2 supported Pt catalyst (Pt/PANI-SnO2) for methanol oxidation have been investigated by cyclic voltammetry, chronoamperometry, and chronopotentiometry. Under the same loading mass of Pt, the Pt/PANI-SnO2 catalyst shows higher electrocatalytic activity towards methanol electro-oxidation than Pt/SnO2 catalyst.  相似文献   

2.
Pt nanospheres with an average diameter of 60±10 nm have been successfully synthesized at room temperature through a facile polyoxometalate(POM)-assisted process. Characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) clearly showed that these Pt nanospheres consisted of 2-7 nm Pt nanodots. During the formation of such unique nanostructures, POMs were found to serve as both catalyst and stabilizer. The size of the as-synthesized Pt nanospheres could be controlled solely by adjusting the molar ratio of POMs to H2PtCl6. A possible formation mechanism based on POMs-mediated electron transfer from ascorbic acid (AA) to PtCl62− and AA-assisted aggregation was tentatively proposed to rationalize the formation of such nanostructures. Importantly, these specific Pt nanospheres exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in direct methanol fuel cells.  相似文献   

3.
 以二钛酸钾 (K2Ti2O5) 为前驱体, 通过离子交换和 800oC 焙烧制备了 TiO2晶须 (TiO2(800oC)), 并采用乙二醇胶体法, 在 TiO2(800oC) 样品上负载 1% Pt 纳米颗粒制成了 Pt/TiO2(800oC 催化剂. 采用 X 射线衍射、扫描电镜、透射电镜、X 荧光光谱和低温 N2 吸附-脱附等技术对催化剂进行了表征, 并考察了该催化剂光催化降解苯酚活性及稳定性. 结果表明, TiO2(800oC)样品为结晶度较高的纯锐钛矿 TiO2, 载 Pt 后催化活性提高到原来的 2.3 倍, 具有很高的单位比表面积活性. 催化剂经 10 次重复使用后, Pt 流失量仅为 6%, 活性为新鲜催化剂的 91%. 而低结晶度的纯锐钛矿或混晶的 TiO2 负载 Pt 催化剂的活性和稳定性均不及 Pt/TiO2(800oC).  相似文献   

4.
利用硝基甲烷还原法在室温条件下得到了纳米Pt粒径可控的担载Pt/γ-Al2O3催化剂, 并利用甲醇重整反应为反应探针考察了Pt粒径与催化反应性能之间的关系, 发现催化反应的性能与担载贵金属颗粒粒径之间存在明显的相关性. 通过透射电镜(TEM)、X射线衍射(XRD)、程序升温还原(TPR)等测试手段对催化剂进行表征, 发现钠米Pt的粒径大小不但影响甲醇重整反应的活性, 同时也影响反应的选择性, 即催化剂的催化性能与担载贵金属粒径之间存在明显的尺度效应.  相似文献   

5.
A high‐efficiency nanoelectrocatalyst based on high‐density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au‐Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy are employed to characterize the obtained Au‐Pt/SiO2. It was found that each hybrid nanosphere is composed of high‐density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the Au‐Pt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.  相似文献   

6.
采用阳极氧化法制备得到锐钛矿型二氧化钛(TiO2)纳米管阵列,在其表面通过电镀法沉积Pt,得到了低铂的Pt/TiO2纳米管电极(Pt/TiO2-NTs)。通过扫描电子显微镜和透射电子显微镜对其进行形貌表征后发现,Pt较为均匀地分布于TiO2纳米管阵列中。进一步的电催化析氢结果表明,Pb/TiO2-NTs在10 m A·cm-2时,过电位为0.079 V,塔菲尔斜率为42.7 m V·dec-1,较Pt/TiO2致密膜电极(Pt/TiO2-F)以及商业Pt/C催化剂显示了更为优异的催化活性。同时,在长循环稳定性测试(3 000个周期)中,Pb/TiO2-NTs相较于上述2种对比电极显示了更为优异的稳定性。  相似文献   

7.
The mechanism of catalytic CO oxidation on Pt(100) and Pd(110) single-crystal surfaces and on Pt and Pd sharp tip (~103 Å) surfaces has been studied experimentally by temperature-programmed reaction, temperature desorption spectroscopy, field electron microscopy, and molecular beam techniques. Using the density functional theory the equilibrium states and stretching vibrations of oxygen atoms adsorbed on the Pt(100) surface have been calculated. The character of the mixed adsorption layer was established by high resolution electron energy loss spectroscopy—molecular adsorption (O2ads, COads) on Pt(100)-hex and dissociative adsorption (Oads, COads) on Pt(100)-(1×1). The origin of kinetic self-oscillations for the isothermal oxidation of CO in situ was studied in detail on the Pt and Pd tips by field electron microscopy. The initiating role of the reversible phase transition (hex) ? (1 × 1) of the Pt(100) nanoplane in the generation of regular chemical waves was established. The origination of self-oscillations and waves on the Pt(100) nanoplane was shown to be caused by the spontaneous periodical transition of the metal from the low-active state (hex) to the highly active catalytic state (1 × 1). A relationship between the reactivity of oxygen atoms (Oads) and the concentration of COads molecules was revealed for the Pd(110) surface. Studies using the isotope label 18Oads demonstrated that the low-temperature formation of CO2 at 150 K is a result of the reaction of CO with the highly reactive state of atomic oxygen (Oads). The possibility of the low-temperature oxidation of CO via interaction with the so-called “hot” oxygen atoms (Ohot) appearing on the surface at the instant of dissociation of O2ads molecules was studied by the molecular beam techniques.  相似文献   

8.
Platinum–ruthenium (Pt–Ru) nanoparticles were successfully deposited, for the first time, on the surface of SnO2 nanowires grown directly on carbon paper (Pt–Ru/SnO2 NWs/carbon paper) by potentiostatic electrodeposition method. The resultant Pt–Ru/SnO2 NWs/carbon paper composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic activities of these composite electrodes for methanol oxidation were investigated and higher mass and specific activities in methanol oxidation were exhibited as compared to Pt–Ru catalysts deposited on glassy carbon electrode.  相似文献   

9.
Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.Dedicated to Professor Dr. Alan Bond on the occasion of his 60th birthday.  相似文献   

10.
Two groups of amine-functionalized organosilicas have been synthesized: amorphous polysiloxane xerogels (APX) and ordered mesoporous organosilicas (OMO) by co-condensation of tetraethoxysilane and appropriate alkoxysilanes: aminopropyltriethoxysilane and N-[3-(trimethoxysilyl)propyl]ethylenediamine. The obtained materials were characterized by sorption measurements, X-ray diffractometry, elemental analysis, transmission electron microscopy, and scanning electron microscopy. The OMO samples have well developed porous structure—the values of specific surface area are in the range 740–840 m2/g. While the APX samples are less porous having the corresponding values in the range 280–520 m2/g. The sizes of the ordered mesopores of OMO are in the range 5.9–6.5 nm while for the APX they are 2.9–12.1 nm indicating structural differences between both groups of the samples. All samples were tested as the sorbents of Pt(II) ions. The influence of various parameters such as pH, contact time, equilibrium concentration on Pt(II) adsorption ability onto prepared adsorbents was studied in detail. Additionally, the effect of chloride concentration on Pt(II) adsorption was investigated. The values of static sorption capacities were in the range of 32–102 mgPt(II)/g and 20–139 mgPt(II)/g for OMO and APX series, respectively.  相似文献   

11.
A novel electrocatalyst support material, nitrogen-doped carbon (CNx)-modified Fe3O4 (Fe3O4-CNx), was synthesized through carbonizing a polypyrrole-Fe3O4 hybridized precursor. Subsequently, Fe3O4-CNx-supported Pt (Pt/Fe3O4-CNx) nanocomposites were prepared by reducing Pt precursor in ethylene glycol solution and evaluated for the oxygen reduction reaction (ORR). The Pt/Fe3O4-CNx catalysts were characterized by X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electrocatalytic activity and stability of the as-prepared electrocatalysts toward ORR were studied by cyclic voltammetry and steady-state polarization measurements. The results showed that Pt/Fe3O4-CNx catalysts exhibited superior catalytic performance for ORR to the conventional Pt/C and Pt/C-CNx catalysts.  相似文献   

12.
A simple method for achieving high dispersion and small platinum nanoparticles down to only 2 or 3 nm on structured carbon supports (carbon nanotubes-modified PAN-based carbon fiber and carbon nanotubes-modified graphite foil) is presented. Pulsed electrodeposition of Pt nanoparticles was performed at increased viscosity of the H2PtCl6 containing electrolyte by addition of glycerol. The catalyst nanoparticle size can be controlled by varying the amount of glycerol added into the aqueous H2PtCl6 solution, and adjusting the number of the potential pulses. The shape and size of the Pt nanoparticles was characterized by scanning electron microscopy and transmission electron microscopy. The electrocatalytic properties of Pt nanoparticles with respect to O2 and H2O reduction were investigated by means of cyclic voltammetry, and the improved catalytic activity of the Pt nanoparticles/carbon nanotubes surfaces could be proved.  相似文献   

13.
采用溶液中等离子放电法制备出了Pt纳米颗粒,用热氧化刻蚀和水热法成功的对石墨相氮化碳(g-C3N4)进行处理进而均匀吸附在科琴黑(KB)表面,最终制备出了Pt/g-C3N4/KB纳米复合催化剂。通过XRD分析,扫描电镜,透射电镜和电化学工作站探究了催化剂的组成、结构、颗粒大小以及电化学性能。Pt/g-C3N4/KB纳米复合催化剂展现出了良好的甲醇电氧化性能,性能的提升可能是由于g-C3N4良好的化学稳定性,N元素的存在改变Pt外层电子结构从而提高催化活性,这些因素提高了Pt的催化效率。  相似文献   

14.
采用溶液中等离子放电法制备出了Pt纳米颗粒,用热氧化刻蚀和水热法成功的对石墨相氮化碳(g-C_3N_4)进行处理进而均匀吸附在科琴黑(KB)表面,最终制备出了Pt/g-C_3N_4/KB纳米复合催化剂。通过XRD分析,扫描电镜,透射电镜和电化学工作站探究了催化剂的组成、结构、颗粒大小以及电化学性能。Pt/g-C_3N_4/KB纳米复合催化剂展现出了良好的甲醇电氧化性能,性能的提升可能是由于g-C_3N_4良好的化学稳定性,N元素的存在改变Pt外层电子结构从而提高催化活性,这些因素提高了Pt的催化效率。  相似文献   

15.
Well-defined tungsten-oxide-supported platinum nanoparticles (Pt/WOx) were elaborated by impregnation-reduction of a platinum salt onto commercial monoclinic WO3. Field-emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) revealed that the Pt particles are well-distributed on the oxide support, present a narrow particle size distribution centered on ca. 2–3 nm and a low degree of agglomeration. Carbon black was added to ensure electronic percolation in the electrodes during the electrochemical measurements. COads electrooxidation currents were monitored at potentials as low as 0.1 V vs. RHE on Pt/WOx, demonstrating high CO-tolerance compared to carbon-supported Pt or PtRu catalysts.  相似文献   

16.
We reported a simple and effective green chemistry route for facile synthesis of nanowire-like Pt nanostructures at one step. In the reaction, dextran acted as a reductive agent as well as a protective agent for the synthesis of Pt nanostructures. Simple mixing of precursor aqueous solutions of dextran and K2PtCl4 at 80 °C could result in spontaneous formation of the Pt nanostructures. Optimization of the experiment condition could yield nanowire-like Pt nanostructures at 23:1 molar ratio of the dextran repeat unit to K2PtCl4. Transmission electron microscopy results revealed that as-prepared nanowire-like Pt nanostructures consisted of individual Pt nanoparticles with the size range from 1.7 to 2.5 nm. Dynamic light scattering analysis indicated that as-prepared nanowire-like nanostructures have already formed in solution. The as-prepared nanowire-like Pt nanostructures were further characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. In addition, the ratio dependence and temperature dependence of this reaction have also been investigated. The as-prepared nanowire-like Pt nanostructures can be immobilized on glassy carbon electrodes using an electrochemical coupling strategy, and the resulting nanowire-like Pt nanostructures modified film exhibited an excellent electrocatalytic activity for the reduction of oxygen and the oxidation of NADH.  相似文献   

17.
A Ta2O5–Pt nanostructure electrode was fabricated by means of cosputtering deposition method. Worm-like Pt nanoparticles were produced in Ta2O5 matrix as observed by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The electrochemical and electrochromic properties of nanoworm-shaped Ta2O5–Pt electrode are compared with those of Ta2O5 thin-film electrode without Pt nanoparticles.  相似文献   

18.
Pt/porous-IrO2 composite as bifunctional oxygen electrocatalyst for unitized regenerative fuel cell has been prepared by chemical reduction of Pt on porous IrO2 which is obtained via template-removal method. X-ray diffraction and transmission electron microscopy characterizations indicate that the Pt nanoparticles (ca. 4.4 nm) are deposited on both internal and external sites of porous IrO2 nanoparticles. Electrochemical analyses show that the activity toward oxygen evolution reaction on Pt/porous-IrO2 catalyst is 28% (at 1.55 V) higher than that on Pt/commercial-IrO2 catalyst, and the activity towards oxygen reduction reaction on the former is 2.3 times (at 0.85 V) that on the latter. Oxygen reduction on Pt/porous-IrO2 catalyst follows the first-order kinetics and the four-electron mechanism.  相似文献   

19.
利用光沉积方法在TiO2表面分别负载1%(质量分数) Pt、Pd、Au和Ag助催化剂.用TEM、XRD、UV-vis等技术对催化剂进行了表征,并利用连续瞬态电流时间响应和线性扫描伏安法等电化学方法,对贵金属负载的TiO2光催化剂在光照条件下的电流响应强度及电催化析氢电位等特性加以测试.分析了贵金属助催化剂对光催化还原CO2性能的差异.结果表明,负载贵金属助催化剂能显著加速光生电子空穴的分离,降低复合率;另外,助催化剂对还原CO2选择性的顺序为Ag>Au>Pd>Pt.贵金属助催化剂还原CO2的加氢选择性和析氢过电位存在相关性,即越不利于析氢过程的助催化剂,其催化CO2加氢还原产物的选择性越高.  相似文献   

20.
采用浸渍沉淀法制备出WO3-碳纳米管(WO3-CNTs)纳米复合材料, 微波辅助乙二醇法在其表面负载活性成分Pt, 得到纳米Pt/WO3-CNTs 催化剂. 采用X射线衍射(XRD), 透射电子显微镜(TEM)和X射线光电子能谱(XPS)等测试手段对催化剂的结构和形貌进行表征, 结果表明Pt 纳米粒子为面心立方晶体结构, 粒径大小在3-5 nm之间, 均匀地分布在WO3-CNTs 纳米复合材料表面, 同时发现催化剂中的Pt 主要以金属态的形式存在. 采用循环伏安和计时电流法研究了在酸性溶液中Pt/WO3-CNTs 催化剂对甲醇的电催化氧化性能, 结果表明Pt/WO3-CNTs 催化剂比用硝酸处理的碳纳米管载铂催化剂(Pt/CNTs)对甲醇呈现出更高的电催化氧化活性和抗CO中毒性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号