首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Solid State Sciences》2007,9(5):404-409
Laser zone melting was employed in this work to prepare MTiO3 based coatings over commercial, polycrystalline Al2O3 substrates, using the corresponding mixtures of powdered alkaline earth carbonates and TiO2 as starting materials. In situ synthesis of the series M = Ca, Sr, Ba was studied using a CO2 laser as the heating source, emitting at 10.6 μm, following substrate preheating to a temperature of 750 °C and sample displacement speed of 500 mm h−1. Microstructure (SEM) and phase composition (XRD) demonstrated in situ formation of crystalline MTiO3 perovskite (M = Ca, Sr), MAl2O4 (M = Ca), MAl12O19 magnetoplumbite type (M = Sr) and MAl14O22 β-alumina type (M = Ba) phases. Substantial interaction with the substrate resulted in stable, 50–150 μm thick, composite coatings.  相似文献   

2.
The synthesis of neodymium(III) bromide (NdBr3) by sintering brominating of neodymium oxide (Nd2O3) with ammonium bromide (NH4Br) was investigated. The influence of various synthesis parameters (temperature, contact time and stoichiometry) on the reaction yield was studied and optimized. The main interaction effects of the synthesis parameters on the reaction yield were also determined by a full 23 factorial designs with six replicates at the center point.This study showed that the optimum conditions for the synthesis of NdBr3 are following: contact time t = 60 min, stoichiometry in moles Nd2O3:NH4Br = 1:24 and temperature T = 400 °C. The reaction yield for these parameters was equal to 97.80%. The first order model was obtained to predict the reaction yield as a function of these three parameters. It was shown that all parameters have a significant positive influence on reaction yield. In addition it was pointed out also that the interaction effects between them are significant.  相似文献   

3.
Comprehensive (p, ρ, T) measurements on two binary mixtures (0.10 CO2 + 0.90 N2 and 0.15 CO2 + 0.85 N2) were carried out in the gas phase at seven isotherms between (250 and 400) K and pressures up to 20 MPa using a single sinker densimeter with magnetic suspension coupling. A total of 69 (p, ρ, T) data for the first mixture and 69 (p, ρ, T) data for the second are presented in this article. The uncertainty in density was estimated to be (0.02 to 0.15)%, while the uncertainty in temperature was 3.9 mK and the uncertainty in pressure was less than 0.015% (coverage factor k = 2). Experimental results were compared with densities calculated from the GERG equation of state and with data reported by other authors for similar mixtures. Results yielded that, while deviations between experimental data and values calculated from the GERG equation were lower than 0.05% in density for low pressures, the relative error at high pressures and low temperatures increased to about (0.2 to 0.3)%. The main aim of this work was to contribute to an accurate density data base for CO2/N2 mixtures and to check or improve equations of state existing for these binary mixtures.  相似文献   

4.
In this paper, we report the effects of the substitution of Sr by Eu on the properties of Bi-2201 ceramics. Samples with nominal compositions of Bi2Sr2?xEuxCuOy (x = 0–0.4) are elaborated in air by solid state reaction. They are characterized by means of X ray diffraction (XRD), scanning electron microscopy (SEM), magnetic and resistivity measurements. The undoped sample (x = 0) is monophasic and its structure belongs to phase A. No trace of superconductivity is observed down to 2 K for this sample and the variation of resistivity with temperature shows a semiconducting behaviour. As Eu is added and for x  0.2, the samples convert totally to B or Raveau phase and become superconducting. The highest Tc, obtained from both magnetic and resistivity measurements, is observed for x = 0.3. In the normal state, all the samples exhibit a semiconducting character which decreases as well as resistivity when the Eu content increases. The refinement of cell parameters is done with considering the structural modulation. The study shows that the substitution of Sr2+ by Eu3+ leads to an increase of a and b parameters, while c decreases similarly to those of the La doped phases. The a axis component of the modulation is observed to be independent of Eu content, while the c axis one increases slightly as this content increases. The XRD analysis has also revealed that the limit solubility of the used Eu2O3 oxide is situated between x = 0.3 and 0.4 of Eu content. The SEM micrographs show that the undoped sample consists of poorly connected grains with a random distribution. A quite different microstructure is obtained for the doped samples. The grains are more connected and have a flat shape which is characteristic of the Bi-based superconductors.  相似文献   

5.
《Vibrational Spectroscopy》2007,43(2):206-214
Solid deposits have been formed at 88 K and 10−1 Torr from ethanol–water gas collected above aqueous solutions of ethanol (EtOH) (0.6, 2, 4.5, 9 and 17 mol%). The composition of different gas mixtures varying between 1:16 and 1:0.8 EtOH:H2O are determined at 295 K using our experimental vapor–liquid equilibrium (VLE) data in combination with the Wilson model [28]. The Wilson constants derived at this temperature are Λ12 = 0.37(4) and Λ21 = 0.58(5). The concentration of EtOH in the ice mixture can be calculated using these data and a kinetic model of condensation. It is found to vary between 9 and 65 mol% EtOH. The ice mixtures are analyzed in situ in a modified cryostage by micro-Raman spectroscopy. The distinct vibrational signatures of pure EtOH, EtOH aqueous solutions and EtOH–ice mixtures are identified in the 400–3800 cm−1 spectral range. Internal vibrational motions of EtOH molecules are affected by temperature and concentration. The presence of amorphous EtOH–ice phases at 88 K is demonstrated by the characteristic vibrational signatures of the νOH stretching modes. The crystallization of an EtOH hydrate is proposed during annealing at ∼140 K of a 65 mol% EtOH–ice mixture. According to our preliminary X-ray diffraction work, this phase has apparently a distinct structure from that of solid EtOH or from EtOH–clathtrate structures usually found in frozen aqueous solutions. For ice mixtures of lower EtOH content, a distinct hydrate phase crystallizes at ∼170 K. These results suggest that ice mixtures obtained by vapor deposition reflect the existence of EtOH clusters of a distinctive structural nature with respect to those encountered in frozen aqueous mixtures.  相似文献   

6.
《Polyhedron》2005,24(16-17):2437-2442
The synthesis and magnetic characterization of pyrazolato-bridged dinuclear complexes [{M(NCS)(4-Phpy)}2(μ-bpypz)2] (Hbpypz = 3,5-bis(2-pyridyl)-pyrazole; 4-Phpy = 4-phenylpyridine; M = Co2+ (1) and Fe2+ (2)) are described together with the X-ray crystal analysis of the cobalt complex. The structure of 1 shows that the desired coordination has been achieved with the cobalt atoms being coordinated to two bpypz to form the dimer. The X-ray diffraction patterns show 1 and 2 to be isomorphous at room temperature. 2 displays a single spin-crossover transition between the [HS–HS] and [LS–LS] states with Tc = 150 K.  相似文献   

7.
In the present work we report a reaction in which dimethyl sulfoxide, initially used as solvent, undergoes oxidation to form sulfate, which then participates to the formation of a linear one-dimensional copper chain. Indeed, using [Cu(bipy)Cl2], a building block largely applied in synthesis of molecular magnetic compounds, the coordination compound [Cu(bipy)(H2O)2(SO4)]n, where bipy = 2,2′-bipyridine was obtained. Magnetic characterization of complex shows a weak antiferromagnetic interaction between the copper(II) ions with J = ?0.53 cm?1. DFT calculations demonstrate that the pathway for the weak antiferromagnetic interaction is through the sulfate bridge.  相似文献   

8.
SrFe12O19 (SFO)/Ni0.5Zn0.5Fe2O4 (NZFO) composite ferrite nanofibers with diameters about 120 nm have been prepared by the electrospinning and calcination process. The SFO/NZFO composite ferrites are formed after calcined at 700 °C for 2 h and the composite nanofibers with various mass ratios obtained at 900 °C are fabricated from NZFO grains about 16–40 nm and SFO grains of 19–45 nm with a uniform phase distribution. With the SFO ferrite content increasing, the coercivity (Hc) and remanence (Mr) for the composite ferrite nanofibers initially increase, reaching maximum values of 379.8 kA/m (297 K) and 242.2 kA/m (77 K), 39.1 Am2/kg (297 K) and 53.5 Am2/kg (77 K), respectively, at a mass ratio (SFO:NZFO) of 4, and then show a reduction tendency with a further increase of the mass ratio. This enhancement in magnetic properties is attributed to the competition of the exchange–coupling interaction and the dipolar interaction in the composite nanofibers.  相似文献   

9.
In situ autocombustion has been developed as a novel and efficient route for the synthesis of perovskite–carbon nanocomposites for the oxygen reduction reaction (ORR) in alkaline media. We demonstrate the synthesis of crystalline LaMnO3 + δ perovskite–Vulcan composite with a high accessibility of active sites and high electronic conductivity required for efficient electrocatalysis. The rotating disc electrode measurements evidenced an excellent activity of the composite for the ORR.  相似文献   

10.
In this study, the poly(methyl methacrylate-co-2,2,3,4,4,4-hexafluorobutyl methacrylate) [P(MMA-co-HFBMA)] as a fluoric copolymer was prepared using dispersion polymerization in supercritical carbon dioxide. The characterization for the prepared P(MMA-co-HFBMA) was investigated with varied ratios of MMA vs HFBMA (30:1, 25:1, 22:1 and 20:1), 2,2′-azobisisobutyronitrile (AIBN) amounts (1.0, 2.0, 3.0, and 4.0) wt% and the weight average molar mass (Mw).Experimental cloud-point data at temperatures to 454 K and pressures up to 184 MPa are reported for binary and ternary mixtures of P(MMA-co-HFBMA) in supercritical CH2F2, CHF3 and CHClF2. Experiments are performed in order to determine phase behaviour of binary system for the P(MMA-co-HFBMA) (mole ratio: 25:1, AIBN: (1.0, 2.0, 3.0 and 4.0) wt%) + supercritical solvents (CH2F2, CHF3 and CHClF2) mixtures at temperature range from (333 to 454) K and pressure up to 184 MPa. It appears that the {P(MMA-co-HFBMA) + CH2F2} mixtures show the upper critical solution temperature (UCST) type behaviour with negative slope, while the {P(MMA-co-HFBMA) + CHF3} and {P(MMA-co-HFBMA) + CHClF2} mixtures show lower critical solution temperature (LCST) type curve with positive slope. Cloud-point curves for the P(MMA-co-HFBMA) [mole ratio: 30:1 (Mw = 186,000 g · mol−1), 25:1 (Mw = 176,000 g · mol−1), 22:1 (Mw = 158,000 g · mol−1) and 20:1 (Mw = 126,000 g · mol−1); AIBN: 1.0 wt%) + supercritical (CH2F2, CHF3 and CHClF2) mixtures show a negative slope for the {P(MMA-co-HFBMA) + CH2F2}, and a positive slope for the {P(MMA-co-HFBMA) + CHF3} and {P(MMA-co-HFBMA) + CHClF2} mixtures at temperatures to 454 K and pressure up to 184 MPa. Also, the impact of MMA on phase behaviour for the {P(MMA-co-HFBMA) (mole ratio: 25:1; AIBN: (1.0 and 2.0) wt%) + CH2F2} mixtures are measured in changes of the (pressure + temperature) slope from UCST behaviour to LCST behaviour, and with MMA co-solvent concentrations of (0.0 to 40.1) wt%.  相似文献   

11.
《Polyhedron》2005,24(16-17):2153-2159
The synthesis, X-ray structure and magnetic susceptibility of (2,5-dimethylpyrazine)copper(II) chloride (1), and the synthesis and magnetic susceptibility of (2,6-dimethylpyrazine)2copper(II) chloride (2), are reported. Compound 1 crystallizes in the space group P21/c as a coordination polymer of Cu(II) ions bridged by 2,5-methylpyrazine. The resulting chains are magnetically linked via short chloride–chloride contacts. The magnetic susceptibility responds as a uniform Heisenberg chain (2J/k = −20(5) K) with a phase transition to three dimensional order near 5 K. Susceptibility data for compound 2 show that the compound is a linear chain coordination polymer with the copper ions linked by bihalide bridges. A fit to the model for a uniform Heisenberg chain yields 2J = −22.7(2) K.  相似文献   

12.
《Solid State Sciences》2007,9(5):432-439
This work is devoted to the synthesis of monazite-type compounds LnPO4 (with Ln = La, Ce, Pr, Nd, Sm, Eu and Gd) by solid–solid reaction between a lanthanide oxide and a phosphate precursor NH4H2PO4. Starting mixtures and resulting powders were characterized by coupling different techniques, in particular thermal analysis, X-ray diffraction and MAS 31P NMR. Results are presented according to the valence state of the lanthanide element in its oxide form. The intermediate chemical reactions occurring during the firing of starting reagents are described for the first time in the case of monazite with one or several cations. It has been highlighted that the solid-state route is an efficient way in order to obtain very pure and very well crystallized monazite powder. Optimum synthesis conditions are 1350 °C–2 h. The synthesis of monazite powders containing several lanthanides appears to be more difficult, because all the lanthanides do not react at the same temperature, leading to the formation of heterogeneous powders.  相似文献   

13.
Preliminary tests of the chlorination of two iron oxides (wüstite and hematite) in various chlorinating gas mixtures were performed by thermogravimetric analysis (TGA) under non-isothermal conditions. Wüstite started to react with chlorine from about 200 °C generating ferric chloride and hematite as the final reaction products. The presence of a reducing and oxidizing agent in the chlorinating gas mixtures influenced the chlorination reactions of both iron oxides, during non-isothermal treatment, only at temperatures higher than 500 °C.The chlorination kinetics of hematite with Cl2 have been studied in details between 600 and 1025 °C under isothermal chlorination. The values of the apparent activation energy (Ea) were about 180 and 75 kJ/mol in the temperature ranges of 600–875 and 875–1025 °C, respectively. The apparent reaction order with respect to Cl2 was found to be 0.67 at 750 °C. Mathematical model fitting of the kinetics data was carried out to determine the most probable reaction mechanisms.  相似文献   

14.
Mixing ionic liquids (ILs) has been revealed as a useful way to finely tune the properties of IL-based solvents. The scarce available studies on IL mixtures have shown a quasi-ideal behavior of their physical properties. In this work, we have performed a thermophysical characterization of two binary IL mixtures, namely {4-methyl-N-butylpyridinium bis(trifluoromethylsulfonyl)imide ([4bmpy][Tf2N]) + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO4])} and {[4bmpy][Tf2N] + 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate [emim][TFES]}. Both binary IL mixtures have been recently proposed as promising solvents in the (liquid + liquid) extraction of aromatic hydrocarbons from mixtures with alkanes. Densities, viscosities, refractive indices, thermal stability, and specific heats of the {[4bmpy][Tf2N] + [emim][EtSO4]} and {[4bmpy][Tf2N] + [emim][TFES]} IL mixtures have been measured as a function of both temperature and composition. Dynamic viscosities, refractive indices, and thermal stability of the {[4bmpy][Tf2N] + [emim][EtSO4]} mixture have exhibited strong deviations from the ideality, in contrast with the quasi-ideal properties of the {[4bmpy][Tf2N] + [emim][TFES]} mixture and the behavior of the imidazolium and pyridinium-based IL mixtures studied hitherto. The reliability of predictive methods of the thermophysical properties of the mixtures has also been evaluated.  相似文献   

15.
In this work we demonstrated the micromanipulation of a single magnetic microparticle (Fe3O4) modified with Prussian blue (PB) for use in magnetic-switchable electrochemistry. A single Fe3O4-PB microparticle with 120 μm was isolated in an electrochemical microcell (20 μL), in which a fine control of PB electrochemical process on carbon electrode (Ø = 4.0 mm) was obtained. For cyclic voltammetry, redox processes attributed to PB/PW (Prussian blue/Prussian white) one electron redox couple were observed, however the capacitive currents were very high. On the other hand, by using differential pulse voltammetry, a maximum faradaic current for anodic peak of 200 nA cm 2 at 0.06 V was observed. Several and high stable chronoamperograms were obtained by “switch on” and “switch off” magnetic commutative states for a single microparticle, showing that the system developed here can be very promising for application in electrochemistry.  相似文献   

16.
By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H2O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H2O). Results were compared with the previous results of {[DEME][BF4] + H2O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H2O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H2O} mixtures too, but the two-Tgs regions lie towards the water-rich side of (77.5 to 85.0) mol% H2O. These clearly reflect the difference in the anionic effect between BF4- and I? on the water structure. The end of the glass-formation region of {[DEME][I] + H2O} mixtures is around x = 95.0 mol% H2O, and this is comparable to that of {[DEME][BF4] + H2O} mixtures (x = 96.0 mol% H2O).  相似文献   

17.
Densities of binary mixtures of N,N-dimethylacetamide (DMA) with water (H2O) or water-d2 (D2O) were measured at the temperatures from T=277.13 K to T=318.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for the (H2O + DMA) and (D2O + DMA) mixtures over the entire range of composition and temperature. The VmE curves exhibit a minimum at x(DMA)≅0.4. At each temperature, this minimum is slightly deeper for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures. The difference between D2O and H2O systems becomes smaller when the temperature increases. The VmE results were correlated using a modified Redlich–Kister expansion. The partial molar volume of DMA plotted against x(DMA) goes through a sharp minimum in the water-rich region around x(DMA)≅0.08. This minimum is more pronounced the lower the temperature and is deeper in D2O than in H2O at each temperature. Again, the difference becomes smaller as the temperature increases. The excess expansion factor αE plotted against x(DMA) exhibit a maximum in the water rich region of the mole fraction scale. At each temperature, this maximum is higher for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures, and the difference becomes smaller as the temperature increases. At its maximum, αE can be even more than 25 per cent of total value of the cubic expansion coefficient α in the (H2O + DMA) and (D2O + DMA) mixtures.  相似文献   

18.
The thin membrane of BaCe0.8Sm0.2O3−δ (BCS) with high quality was successfully fabricated on porous NiO–BCS anode substrate through a novel in situ reaction method. The key part of this method is to directly spray well-mixed suspension of BaCO3, CeO2 and Sm2O3 instead of pre-synthesized BCS ceramic powder on the anode substrate. After sintering at 1400 °C for 5 h, the extremely dense electrolyte membrane in the thickness of 10 μm is obtained. A single cell was assembled with La0.7Sr0.3FeO3−σ as cathode and tested with humidified hydrogen as fuel at 650 °C. The open circuit voltage (OCV) and maximum power density respectively reach 1.04 V and 535 mW/cm2. Interface resistance of cell under open circuit condition was also investigated.  相似文献   

19.
The chemistry of transition metal dithiolene complexes based on thiophene-dithiolene ligands (TD) is reviewed, from the ligand synthesis and complex preparation to the molecular structure and solid state physical properties of different compounds based on them. The ligands considered are based mainly either on simple thiophene-dithiolates (α-tpdt = 2,3-thiophenedithiolate, dtpdt = 4,5-dihydro-2,3-thiophenedithiolate, and tpdt = 3,4-thiophenedithiolate), or in more extended and delocalised dithiolate ligands (α-tdt = 3-({5-[(2-cyanoethyl)thio]-2-thieno[2,3-d][1,3]dithiol-2-ylidene-1,3-dithiol-4-yl}thio)propanenitrile and dtdt = 3-{5-[(2-cyanoethyl)thio]-2-(5,6-dihydrothieno[2,3-d][1,3]dithiol-2-ylidene-1,3-dithiol-4-yl)thio}propanenitrile) that besides the thiophenic ring also incorporates a fused TTF moiety. Dithiolene complexes based on ligands containing appended thiophenic units will also be briefly considered. The structural variability of these complexes that in addition to the usual square planar coordination geometry, M(TD)2, can also present dimeric, [M(TD)2]2, or cluster structures such as [Cu4(TD)3] and [Ni4(TD)6], is addressed. The role of the thiophene group and its ability to enhance electronic delocalisation from the metal dithiolene core throughout the ligand and to establish solid state networks of S?S interactions is discussed. The importance of these complexes as useful building blocks to prepare molecular materials with very interesting magnetic and transport properties, ranging from metamagnets to Single Component Molecular Metals, is illustrated by different compounds based on them.  相似文献   

20.
《Polyhedron》2005,24(16-17):2491-2496
The bis(dithiolene) oxovanadium complex, namely (n-Bu4N)2[(dcbdt)2VO] (dcbdt = 4,5-dicyanobenzene-1,2-dithiolato), was unprecedentedly obtained from the reaction of Na2dcbdt and vanadium trichloride. An X-ray structure analysis indicated that [(dcbdt)2VO] moieties are surrounded by n-Bu4N cations and there was no direct interaction among these moieties. Although there was no direct interaction among them, several S⋯H, C⋯H and N⋯H van der Waals contacts between n-Bu4N cations and [(dcbdt)2VO] moieties were observed. The ESR and SQUID measurement showed that the vanadium atom is in the state of V(IV) (S = 1/2) and these magnetic moments interact with each other very weakly antiferromagnetically (θ = -0.371 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号