首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article presents the design of a high output compliance, very-high output impedance single-ended charge pump implemented using a new low-voltage current mirror. The output current is sampled and a feedback loop forces it to be equal to the desired reference current. This results in a very-high output impedance over a very wide output voltage range, accurate Up/Down current matching, and low transient glitches. The proposed charge pump was implemented using STMicroelectronics 1-V 90-nm CMOS process. Simulations using Spectre show that the Up/Down output currents remain constant and matched within 1% over a charge pump output voltage ranging from 119 to 873 mV. Monte Carlo process variations and mismatch simulations indicate that the 1-σ standard deviation between the Up and Down current components is , or 6.8% of the nominal charge pump current at either end of the output voltage range.  相似文献   

2.
This paper presents the design and implement of a CMOS smart temperature sensor,which consists of a low power analog front-end and a 12-bit low-power successive approximation register(SAR) analog-to-digital converter(ADC).The analog front-end generates a proportional-to-absolute-temperature(PTAT) voltage with MOSFET circuits operating in the sub-threshold region.A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage.Using 0.18 m CMOS technology,measurement results show that the temperature error is0.69/C0.85 °C after one-point calibration over a temperature range of40 to 100 °C.Under a conversion speed of 1K samples/s,the power consumption is only 2.02 W while the chip area is 230225 m2,and it is suitable for RFID application.  相似文献   

3.
This paper presents a novel CMOS low-voltage and low-power positive second-generation current conveyor (CCII+). The proposed CCII+ uses two n-channel differential pairs instead of the complementary differential pairs; i.e. (n-channel and p-channel), to realize the input stage. This solution allows almost a rail-to-rail input and output operation; also it reduces the number of current mirrors needed in the input stage. The CCII+ is operating at supply voltages of ±0.75 V with a total standby current of 133 μA. The application of the proposed CCII+ to realize a MOS-C second order maximally flat low-pass filter is given. PSpice simulation results for the proposed CCII+ and its application are given. Ahmed H. Madian was born in Jeddah, Saudi Arabia in 1975. He received the B.Sc. degree with honors, and the M.Sc. degree in electronics and communications from Cairo University, Cairo, Egypt, in 1997, and 2001 respectively. He is currently a Research Assistant in the Electronics Engineering Department, Micro-Electronics Design Center, Egyptian Atomic Energy Authority, Cairo, Egypt. His research interests are in circuit theory; low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed/digital applications on filed programmable gate arrays. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the BSc degree with honors in 1994, the MSc degree in 1996, and the PhD degree in 1999, all from the Electronics and Communications Department, Cairo University, Egypt. He is currently an Associate Professor at the Electrical Engineering Department, Fayoum University, Egypt. He is currently also a visiting Associate Professor at the Electrical and Electronics Engineering Department, German University in Cairo, Egypt. In 2005, He was decorated with the Science Prize in Advanced Engineering Technology from the Academy of Scientific Research and technology. His research and teaching interests are in circuit theory, fully-integrated analog filters, high-frequency transconductance amplifiers, low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964,the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997-September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985-1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987-1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo.He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In November 2005, Dr Soliman gave a lecture at Nanyang Technological University, Singapore.Dr Soliman was also invited to visit Taiwan and gave lectures at Chung Yuan Christian University and at National Central University of Taiwan. In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems. Dr Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004-Now.  相似文献   

4.
本文设计了一种低压低功耗CMOS折叠一共源共栅运算放大器.该运放的输入级采用折叠-共源共栅结构,可以优化输入共模范围,提高增益;由于采用AB类推挽输出级,实现了全摆幅输出,并且大大降低了功耗.采用TSMC 0.18μm CMOS工艺,基于BSIM3V3 Spice模型,用Hspice对整个电路进行仿真,结果表明:与传统结构相比,此结构在保证增益、带宽等放大器重要指标的基础上,功耗有了显著的降低,非常适合于低压低功耗应用.目前,该放大器已应用于14位∑-△模/数转换电路的设计中.  相似文献   

5.
A low-power low-voltage analog signal processing circuit has been designed, fabricated, and tested. The circuit is capable of processing an analog sensor current and producing an ASK modulated digital signal with modulating signal frequency proportional to the sensor current level. An on-chip regulator has been included to stabilize the supply voltage received from an external RF power source. The circuit can operate with a power supply as low as 1 V and consumes only about 20 μW of power, which is therefore very suitable for implantable biomedical applications. The whole chip was laid out and fabricated in a 0.35 μm bulk CMOS technology. Experimental results show good agreement with the simulation results.  相似文献   

6.
秦瑞  沈延钊  王纪民 《微电子学》2007,37(2):286-290
设计了一种CMOS智能温度传感器的前端电路,包括温度检测电路、基准电流源和自稳零放大器。通过分析垂直衬底PNP晶体管的非理想特性,提出了相应的减小温度检测误差的方法;设计了一个对电源电压和温度变化不敏感的基准电流源,为温度检测器件提供精确的偏置电流;通过自稳零放大器对检测到的微弱电压信号进行放大。整个电路基于上华0.6μm CMOS工艺实现,采用Hspice工具进行仿真。仿真结果表明,该电路检测温度范围从-55℃到125℃,检测精度在1℃以内。  相似文献   

7.
8.
We report on two generations of CMOS image sensors with digital output fabricated in a 0.6 μm CMOS process. The imagers embed an ALOHA MAC interface for unfettered self-timed pixel read-out targeted to energy-aware sensor network applications. Collision on the output is monitored using contention detector circuits. The image sensors present very high dynamic range and ultra-low power operation. This characteristics allow the sensor to operate in different lighting conditions and for years on the sensor network node power budget. Eugenio Culurciello (S’97–M’99) received the Ph.D. degree in Electrical and Computer Engineering in 2004 from Johns Hopkins University, Baltimore, MD. In July 2004 he joined the department of Electrical Engineering at Yale University, where he is currently an assistant professor. He founded and instrumented the E-Lab laboratory in 2004. His research interest is in analog and mixed-mode integrated circuits for biomedical applications, sensors and networks, biological sensors, Silicon on Insulator design and bio-inspired systems. Andreas G. Andreou received his Ph.D. in electrical engineering and computer science in 1986 from Johns Hopkins University. Between 1986 and 1989 he held post-doctoral fellow and associate research scientist positions in the Electrical and Computer engineering department while also a member of the professional staff at the Johns Hopkins Applied Physics Laboratory. Andreou became an assistant professor of Electrical and Computer engineering in 1989, associate professor in 1993 and professor in 1996. He is also a professor of Computer Science and of the Whitaker Biomedical Engineering Institute and director of the Institute’s Fabrication and Lithography Facility in Clark Hall. He is the co-founder of the Johns Hopkins University Center for Language and Speech Processing. Between 2001 and 2003 he was the founding director of the ABET accredited undergraduate Computer Engineering program. In 1996 and 1997 he was a visiting professor of the computation and neural systems program at the California Institute of Technology. In 1989 and 1991 he was awarded the R.W. Hart Prize for his work on mixed analog/digital integrated circuits for space applications. He is the recipient of the 1995 and 1997 Myril B. Reed Best Paper Award and the 2000 IEEE Circuits and Systems Society, Darlington Best Paper Award. During the summer of 2001 he was a visiting professor in the department of systems engineering and machine intelligence at Tohoku University. In 2006, Prof. Andreou was elected as an IEEE Fellow and a distinguished lecturer of the IEEE EDS society. Andreou’s research interests include sensors, micropower electronics, heterogeneous microsystems, and information processing in biological systems. He is a co-editor of the IEEE Press book: Low-Voltage/Low-Power Integrated Circuits and Systems, 1998 (translated in Japanese) and the Kluwer Academic Publishers book: Adaptive Resonance Theory Microchips, 1998. He is an associate editor of IEEE Transactions on Circuits and Systems I.  相似文献   

9.
A proposed transconductance enhanced method for low-voltage bulk-driven input stage is presented in this paper. The basic idea is to use current–shunt auxiliary amplifier to improve the voltage gain from the inputs to the gates of bulk-driven pairs. The enhanced voltage gain of the auxiliary amplifier leads to the improvement of the effective transconductance of the input stage. Results show that the transconductance of the OTA using the proposed bulk-driven input stage improves almost 200% without additional power and area dissipation compared to the conventional bulk-driven counterpart.  相似文献   

10.
This paper describes a CMOS voltage reference using only resistors and transistors working in weak inversion,without the need for any bipolar transistors.The voltage reference is designed and fabricated by a 0.18μm CMOS process.The experimental results show that the proposed voltage reference has a temperature coefficient of 370 ppm/℃at a 0.8 V supply voltage over the temperature range of-35 to 85℃and a 0.1%variation in supply voltage from 0.8 to 3 V.Furthermore,the supply current is only 1.5μA at 0.8 V supply voltage.  相似文献   

11.
一种工作在亚阈值区的低电压低功耗基准电压电路   总被引:1,自引:1,他引:0  
本文提出了一种不使用三极管而只使用工作在亚阈值区的晶体管和电阻的电压基准。使用0.18um工艺进行流片以及测试的结果表明:本文所设计的电压基准可在0.8V的低电压下工作,在温度从-35˚C到85˚C的范围内,温度系数为370ppm/˚C;电源电压从0.8V到3V的条件下,电压偏差小于0.1%。而且在电源电压为0.8V的条件下,整个芯片的功耗只有1.5uA。  相似文献   

12.
A new low-power full-adder based on CMOS inverter is presented. This full-adder is comprised of inverters. Universal gates such as NOR, NAND and MAJORITY-NOT gates are implemented with a set of inverters and non-conventional implementation of them. In the proposed design approach the time consuming XOR gates are eliminated. As full-adders are frequently employed in a tree-structured configuration for high-performance arithmetic circuits, a cascaded simulation structure is employed to evaluate the full-adders in a realistic application environment. The circuits being studied were optimized for energy efficiency using 0.18 μm and 90 nm CMOS process technologies. The proposed full-adder shows full swing logic, balanced outputs and strong output drivability. It is also observed that the presented design can be utilized in many cases especially whenever the lowest possible power consumption is targeted. Circuits layout implementations and checking their functionality have been done using Cadence IC package and Synopsys HSpice, respectively.  相似文献   

13.
一种低压CMOS带隙电压基准源   总被引:4,自引:3,他引:1  
郑浩  叶星宁 《微电子学》2005,35(5):542-544,548
设计了一种与标准CMOS工艺兼容的低压带隙电压基准源,该电路应用二阶曲率补偿,以及两级运算放大器,采用0.8μm BSIM3v3 CMOS工艺,其中,Vthn=0.85 V,Vthp=-0.95 V。用Cadence Spectre软件仿真得出:最小电源电压1.8 V,输出电压590 mV,在0~100℃范围内,温度系数(TC)可达15 ppm/℃,在27℃时输出电压变化率为±2.95 mV/V。  相似文献   

14.
一种具有高电源抑制比的低功耗CMOS带隙基准电压源   总被引:7,自引:5,他引:7  
汪宁  魏同立 《微电子学》2004,34(3):330-333
文章设计了一种适用于CMOS工艺的带隙基准电压源电路,该电路采用工作在亚阈值区的电路结构,并采用高增益反馈回路,使其具有低功耗、低电压、高电源电压抑制比和较低温度系数等特点。  相似文献   

15.
ABSTRACT

In this paper, a new low-power transimpedance amplifier (TIA) based on a modified Regulated Cascode (RGC) circuit structure followed by a closed-loop post-amplifier is proposed for 10 Gb/s applications. The main objective of this work is to reduce the power consumption while, the frequency bandwidth of the proposed amplifier is increased considerably. The booster of a conventional RGC is modified by a cascoded transistor and its effect on the performance of the circuit is studied mathematically, which are verified by simulations. The bandwidth extension is occurred due to increasing the gain of the booster amplifier in the RGC stage, which isolates further the input capacitance and results in a reduced input resistance value hence, a higher input pole frequency is obtained in comparison with other conventional RGC structures. On the other hand, by using an active inductive peaking technique, the frequency of the output pole is also increased which results in a further extension of the frequency bandwidth for the proposed circuit. The proposed TIA is simulated using 90 nm CMOS technology parameters, which shows a 50.5 dBΩ transimpedance gain, 7.3 GHz frequency bandwidth and 1.22 µArms input referred noise value for only 1 mW of power consumption at 1.2 V supply voltage.  相似文献   

16.
A 50 kbps/ISM band (902 − 926 MHz) low power transceiver for short-range wireless sensor networks (WSN) has been designed in 0.18 μm 1-poly-6 metal CMOS technology and occupy 950 μm × 800 μm. The proposed WSN transceiver designed based on an improved version of the Amplitude-Shift Keying communication scheme has a better continuous RF modulated carrier waveform as well as does not require complex modulator/demodulator circuits. In addition, to reduce power dissipation and increase power efficiency many circuit techniques have been adopted. The power dissipation and the power efficiency of the proposed WSN transceivers are 1.58 mW and 21%, respectively.  相似文献   

17.
基于带隙基准的原理,采用0.6μm、N阱CMOS工艺,文章设计了一种工作在亚阈值区的用于锂离子和锂聚合物电池充电保护芯片的低功耗基准电路。Hspice仿真结果表明:基准电压为1.068V,电源电压由1.8V到8V变化,电路最大消耗电流小于0.15μA;温度由-40℃到80℃变化,其温度系数约为±10ppm/℃。整个充电保护芯片测试结果,其功耗小于0.6μW。  相似文献   

18.
为了在较大的温度范围内改善传感器的线性并降低功耗,提出一种新的应用于无线传感网的频率输出温度传感器。采用了多谐振荡器电流转频率电路,主要由一个双向电流积分器组成,由电压窗口比较器驱动,由单独的1.2 V供给电压,并利用低成本的0.18 μm CMOS技术制作。实验结果表明,在?40°C到+120°C的温度范围内,该温度传感器表现出高线性的特点,实现了±1°C的误差,敏感性分别为340 Hz /°C,功耗为2.1 μW,面积为0.02 mm2,十分适合无线传感网的各种应用。  相似文献   

19.
In this paper we present a new current-mode basic building block that we named voltage and current gained second generation current conveyor (VCG-CCII). The proposed active block allows to control and tune both the CCII current gain and the voltage gain through external control voltages. It has been designed, at transistor level in a standard CMOS technology (AMS 0.35 μm), with a low single supply voltage (2 V), as a fully differential active block. The proposed integrated solution, having both low-voltage (LV) and low-power (LP) characteristics, can be applied with success in suitable IC applications such as floating capacitance multipliers and floating inductance simulators, utilizing a minimum number of active components (one and two, respectively). Simulation results, related to floating impedance simulators, are in good agreement with the theoretical expectations.  相似文献   

20.
Bulk-driven MOS transistors lead to a compact low-voltage/low-power input stage implementation. This paper illustrates the rail-to-rail capability of a single-pair bulk-driven CMOS input stage operated from an extremely low supply voltage. A composite input stage is also introduced to point out some limitations inherent in multiple-pair input stages and carry out performance comparison, based on experimental data obtained in standard 0.35 μm CMOS technology. The performance achieved by the single-pair bulk-driven input stage can be readily extended to a nanoscale process, as lower supply voltages in scaled technologies are expected. Measurements demonstrate the rail-to-rail suitability of the single-pair input stage and show intrinsic advantages of this approach in some amplifier features, such as linearity and common-mode rejection ratio, as compared to the case of the composite solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号