首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(2-Benzox(thi)azol-2-yl)phenolate and -naphtholate ate complexes of Sc, Y, La, Sm, Tb, and Yb are synthesized. The structure of (benzoxazolyl)phenolate complexes of La, Sm, and Yb are determined by X-ray diffraction analysis. All synthesized compounds manifest ligand-centered photo- and electroluminescence in a range of 510–540 nm. In addition, the spectra of the samarium and terbium complexes exhibit narrow bands of f-f transitions characteristic of Sm3+ and Tb3+ ions.  相似文献   

2.
Di-μ-chlorobis(2-methyl-2-methoxy-3-t-butylthiopropyl)dipalladium(II) reacted with bis(1,3-diphenyl-2-imidazolidinylidene) to afford a new chlorobridged carbene complex [{PdCl(did)}2] (did  1,3-diphenyl-2-imidazolidinyl-idenato,2-C,2′-C) in 46.2% yield, which has a cyclopalladated chelate structure involving a Pd—carbene and a Pd—aryl bond; new carbene complexes, [{PdBr(did)}2], [{Pd(CH3COO)(did)}2], [Pd(acac)(did)], and [PdCl(did)Q] (Q  4-MePy, P[OCHMe2]3) were also prepared from [{PdCl(did)}2].  相似文献   

3.
Reaction of the dinuclear complex [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl]2 (1) with ligands (L = 4-picoline, sym-collidine) gave the six-membered palladacycles [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (2). The complex 1 reacted with AgX (X = CF3SO3, BF4) and bidentate ligands [L–L = phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), bipy(2,2′-bipyridine) and dppp (bis(diphenylphosphino)propane)] giving the mononuclear orthopalladated complexes [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(L–L)] (3) [L–L = phen, dppe, bipy and dppp]. These compounds were characterized by physico-chemical methods, and the structure of [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}Cl(L)] (L = sym-collidine) was determined by single-crystal X-ray analysis.  相似文献   

4.
Jia G  Law GL  Wong KL  Tanner PA  Wong WT 《Inorganic chemistry》2008,47(20):9431-9438
Six lanthanide coordination compounds with two isomeric carboxylic acids, nicotinic acid (HL(1)) and isonicotinic acid (HL(2)), [(L(1))3Ln(H2O)2]2 (Ln = Eu, 1; Gd, 2; Tb, 3) and [( L(2))2Ln(H2O)4][NO3] (Ln = Eu, 4; Gd, 5; Tb, 6), have been synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1-3 are dimeric whereas 4-6 are polymeric, all with 8-coordination of Ln(3+). The distinction between these lanthanide complexes is readily accomplished from the 10 K high resolution electronic emission spectra. Spectral interpretation is given for the Eu(3+) complexes 1, 4, whereas the spectra of 3 and 6 are more complex. The relationships between spectroscopic and crystallographic site symmetries are discussed. The calculated second rank crystal field strengths of Eu(3+) in 1 and 4 are intermediate in magnitude.  相似文献   

5.
Song X  Zhou X  Liu W  Dou W  Ma J  Tang X  Zheng J 《Inorganic chemistry》2008,47(24):11501-11513
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of lanthanide complexes with two structurally related ligands, 1,1,1,1-tetrakis{[(2'-(2-benzylaminoformyl))phenoxyl]methyl}methane (L(I)) and 1,1,1,1-tetrakis{[(2'-(2-picolyaminoformyl))phenoxyl]methyl}methane (L(II)). A series of zero- to three-dimensional lanthanide coordination complexes have been obtained by changing the substituents on the Pentaerythritol. Our results revealed that, complexes of the L(I) ligand, {Ln(4)L(I)(3)(NO(3))(12).nC(4)H(10)O}(infinity) (Ln = Nd, Eu, Tb, Er, n = 3 or 6)] show the binodal 3,4-connected three-dimensional interpenetration coordination polymers with topology of a (8(3))(4)(8(6))(3) notation. Compared to L(I), complexes of L(II) present a cage-like homodinuclear [Ln(2)L(II)(2)(NO(3))(6).2H(2)O].nH(2)O (Ln = Nd, Tb, Dy, n = 0 or 1) or a helical one-dimensional coordination {[ErL(II)(NO(3))(3).H(2)O].H(2)O}(infinity) polymer. The luminescence properties of the resulting complexes formed with ions used in fluoroimmunoassays (Ln = Eu, Tb) are also studied in detail. It is noteworthy that subtle variation of the terminal group from benzene to pyridine not only sensibly affects the overall molecular structures but also the luminescence properties as well.  相似文献   

6.
We have previously reported the unique luminescence properties of ML4 complexes formed between tropolonate ligands and a series of lanthanide cations, several of them emitting in the near-infrared domain. The synthesis and composition of ML4 lanthanide tropolonate complexes have been previously described in the literature, but no structural information has been available so far. In this work, the crystal structures of several lanthanide tropolonate complexes (Ln3+ = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) have been isolated and systematically analyzed by X-ray diffraction and compared by using different criteria including the Kepert formalism. Such comparative work is rare in lanthanide coordination chemistry. The analysis of the structures in the solid state reveals that although the packing of the ML4 complexes depends on the nature of the metal ion, the coordination geometries around the different lanthanides is virtually similar for all the cations that have been analyzed; an indication that lanthanide-centered f orbitals play a role in controlling this coordination geometry. Analysis of the solution's behavior by stability constant determination reveals the formation of complexes with similar ML4 stoichiometries as those observed in the solid state. Nevertheless, analysis of the luminescence lifetimes indicates that the coordination environment around the lanthanide cations are different in the solid state and in solution, with the presence of one molecule of water bound to the lanthanide cation in solution. The presence of such a water molecule is a significant source of nonradiative deactivation of the excited states of the lanthanide cations, an unfavorable condition that leads to significant loss in fluorescence intensity of these lanthanide complexes. This exemplifies that such comparative analysis between the solid state and solution is important for the rationalization of the luminescence properties of the complexes. This analysis will aid us in optimizing ligand design for improved photophysical properties of the complex.  相似文献   

7.
In this paper,the nanometer-sized(200 nm)quaternary rare-earth complex Eu(BA)(TTA)2phen was successfully prepared by using the method of optimizing chemical precipitation.The characterizations of these nanoparticles were performed by using elemental analysis,thermogravimetric analysis,infrared spectroscopy,fluorescence spectroscopy,transmission electron microscopy and luminescence quantum-yield.The results indicate that they are better than common ternary complexes at light-emitting performance,luminescence properties,thermal stability,uniformity and particle size;they can also be further mixed with a suitable polymer to form functional rare earth polymers.Compared to the common solid materials,the quaternary complex has better and unique characteristics such as nanoparticle size effect and surface effect.A foundation had been laid for the further expansion of its application in the field of light-emitting and magnetic materials.  相似文献   

8.
Russian Chemical Bulletin - With the aim of designing new heteroorganic ligands capable of sensitizing the metal-centered photoluminescence (PL) of YbIII through the redox mechanism, a new...  相似文献   

9.
Reaction of 1-hydrazinophthalazine with chloroacetyl chloride yields 3-chloromethyl-1,2,4-triazolo-phthalazine. Reaction of this product with the tris tert-butyl ester of DO3A yields a triazolophthalazine appended macrocycle. Hydrolysis and complexation with lanthanide ions gives access to a series of lanthanide complexes (Ln = Nd, Eu, Yb, Er); these are all luminescent and exhibit sensitisation of the lanthanide centre by the chromophore.  相似文献   

10.
The complexes [Ag4(dpe)4]·(btec) (1) and [Ag4(bpy)4]·(btec)·12H2O (2) (dpe = 1,2-di(4-pyridyl)ethylene, bpy = 4,4′-bipyridine, H4btec = 1,2,4,5-benzenetetracarboxylic acid) have been synthesized in aqueous alcohol/ammonia by slow evaporation at room temperature and characterized by elemental analysis, single-crystal X-ray diffraction, FTIR, UV–Vis and luminescence spectroscopies. Both complexes are composed of 1D infinite cationic [Ag/dpe(bpy)] n n+ chains and discrete btec4? anions. Their three-dimensional supramolecular structures are built up of cationic sheets formed from [Ag/dpe(bpy)] n n+ units via weak Ag…Ag and Ag…N interactions, plus anionic btec4? sheets featuring electrostatic, ππ and hydrogen bonding interactions. Both complexes exhibited photocatalytic activity for the decomposition of methyl orange under UV light irradiation.  相似文献   

11.
The preparation of a series of complexes of the types [RhCl(CO)2(L)], [RhCl(cod)(L)] and [Rh(cod)(L)2]ClO4, where L is a ligand incorporating a ferrocenyl group and a pyridine ring is described. Complexes were characterized using NMR, IR and electronic spectroscopy. The electrochemical behaviour of the complexes was examined using cyclic voltammetry. The X-ray structures of three of the complexes, [RhCl(CO)2{NC5H4CNC6H45-C5H4)Fe(η5-C5H5)}], [RhCl(cod)(3-Fcpy)] and [RhCl(cod){3-Fc(C6H4)py}], were determined.  相似文献   

12.
13.
Enaminoimines TbtNHC(Me)CHC(Me)NAr (5, Tbt = 2,4,6-[CH(SiMe3)2]3C6H2) bearing a Tbt group were synthesized by the two steps condensation of acetylacetone with bulky amines. Enaminoimines 5 were treated with n-BuLi to give the corresponding lithium β-diketiminates, [Li{TbtNHC(Me)CHC(Me)NAr}] (1). The X-ray structural analysis of [Li{TbtNC(Me)CHC(Me)NMes}] (1c, Mes = mesityl) revealed that it is a monomeric, solvent-free lithium β-diketiminate. The equilibrium between free 1c plus THF and THF-coordinated (1c · thf) was investigated in detail by the determination of the association constant (Ka) in C6D6 at 293 K and the Job’s plot. The heavier alkali metal complexes, sodium and potassium β-diketiminates (6c9c), were prepared by the two routes. THF-coordinated [M{TbtNC(Me)CHC(Me)NMes}(thf)] (6c: M = Na. 7c: M = K) were prepared by the reaction of 5c (Ar = Mes) with MH (M = Na, K). Solvent-free [M{TbtNC(Me)CHC(Me)NMes}] (8c: M = Na. 9c: M = K) were prepared by the reaction of 1c with t-BuOM (M = Na, K).  相似文献   

14.
The reactions of activated CpFeMn(CO)71a and Cp*FeMn(CO)71b, Cp=C5Me5 with thiirane yielded the new dimeric mixed metal disulfido complexes: [CpFeMn(CO)53-S2)]2 (2) and [Cp*FeMn(CO)53-S2)]2 (3). Compounds 2 and 3 both contain two triply bridging disulfido ligands. When heated at 40 °C, compound 2 was transformed into a trimeric compound Cp3Fe3Mn3(CO)153-S2)(μ4-S2)2, 4. Compound 4 contains three disulfido ligands, each of which has a different bridging coordination mode in the six atom metal cluster. There are three inequivalent CpFe(CO)2 groupings linked to a central Mn3(S2)3 core by the disulfido ligands. In solution, compound 4 exhibits a dynamical intramolecular exchange process that interconverts two of the three CpFe(CO)2 groups on the NMR timescale.  相似文献   

15.
Two symmetrical macrocyclic dinuclear complexes, [Cu2L1(ClO4)2(H2O)2][Cu2L1(H2O)2] (ClO4)2 (1) and [Cu2L2(ClO4)2] (2), (where H2L1 and H2L2 are the [2?+?2] condensation products of 1,3-diaminopropane with 2,6-diformyl-4-methylphenol and 2,6-diformyl-4-flurophenol, respectively), have been synthesized and characterized. The electronic and magnetic properties of the complexes were studied by cyclic voltammetry and magnetic susceptibility. There are strong antiferromagnetic couplings between the two copper(II) centers in both complexes. The strongly electron-withdrawing fluorine groups in H2L2 weaken the antiferromagnetic exchange, but make the metal centers more easily reduced than its analog H2L1. The interactions of the complexes with calf thymus DNA were studied by UV?CVis and CD spectroscopic techniques.  相似文献   

16.
Recently, considerable attention has been given to the use of multi-dentate amido ligands in the coordination chemistry of a range of transition metals as a means of accessing novel structural motifs and unusual reactivity. Presented herein is a perspective on transition and f-block metal complexes containing diamido donor ligands of the general form [NDN](2-) (D = NR, O, PR). Particular focus is given to paramagnetic metals, which have in general been studied much less than their diamagnetic counterparts despite their potential to exhibit unique structures and diverse reactivity patterns, in addition to their magnetic properties.  相似文献   

17.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

18.
A comparative study of complexes [Pd(dphpz)(N∧N)]PF6 [dphpz? is the deprotonated form of 2,3-diphenylpyrazine; (N∧N) is ethylenediamine (En), 2,2′-bipyridine (bpy), o-phenanthroline (phen), dipyrido[a,c]phenazine (dppz), 6,7-dicyanopyrido[f,h]quinoxaline (dicnq)] was made, using 1H NMR, electronic absorption, and emission spectroscopy, and also cyclic voltammetry. Steric interaction of the dphpz? phenyl rings leads to significant proton shielding in the carbanionic moiety of the cyclometallated ligand. Introduction of heterocyclic diimines instead of ethylenediamine decreases the desheilding of the dphpz? protons adjacent to the coordination center. Irrespective of the nature of the N∧N ligands, the cyclopalladated complexes are characterized by specific parameters of photo-and electrostimulated electron transfer processes involving the Pd(dphpz) orbitals, namely, by the long-wave absorption band with λmax 395±6 nm and ε (2.2±1.2) × 103 1 mol?1 cm?1, the vibrationally structured low-temperature (77 K) luminescence resulting from the spinforbidden optical transfer from the excited to the ground state of the complex (energy E 00 19.27±0.07 kK, lifetime τ 160±30 μs), and the one-electron electroreduction wave with E 1?(2.0±0.1)V. For the [Pd(dphpz)·(N∧N)]+ complexes containing diazine derivatives of phenanthroline (dppz, dicnq), the degradation of the photoexcitation energy from two electronically excited states can occur as isolated process with successive transfer of electrons to the π orbitals localized on the remote moieties: [Pd(dphpz)] and diazine fragments of the N∧N ligands.  相似文献   

19.
The easily accessible, air- and moisture-stable cyclopalladated ferrocenylimine complex 3 was found to be a highly active one-component precatalyst for the amination of aryl chlorides in water in the presence of inexpensive KOH and t-BuOH as a base and an additive, respectively.  相似文献   

20.
Several ruthenium(II) complexes with new tridentate polypyridine ligands have been prepared, and their photophysical properties have been studied. The new tridentate ligands are tpy-modified systems (tpy = 2,2':6',2' '-terpyridine) in which aromatic substituents designed to be coplanar with the tpy moiety are introduced, with the aim of enhancing delocalization in the acceptor ligand of the potentially luminescent metal-to-ligand charge-transfer (MLCT) state and increasing the MLCT-MC energy gap (MC = metal-centered excited state). Indeed, the Ru(II) complexes obtained with this new family of tridentate ligands exhibit long-lived luminescence at room temperature (up to 200 ns). The enhanced luminescence properties of these complexes support this design strategy and are superior to those of the model Ru(tpy)22+ compound and compare favorably with those of the best Ru(II) complexes with tridentate ligands reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号