首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用室温固相研磨的方法,4,4'-联吡啶与连有阻塞基的乙氧乙醇磺酸酯(或苄溴)反应,得到单取代的4,4'-联吡啶六氟磷酸盐(2),2再与α,α'-二(溴甲基)-2,2'-联吡啶反应,得到哑铃型化合物--2,2'-联吡啶桥连的双-4,4'-联吡啶六氟磷酸盐(3),收率约90%.2和3的结构经1H NMR, 13C NMR和MS表征.  相似文献   

2.
采用室温固相研磨的方法,4,4′-联吡啶与连有阻塞基的乙氧乙醇磺酸酯(或苄溴)反应,得到单取代的4,4′-联吡啶六氟磷酸盐(2),2再与α,α′-二(溴甲基)-2,2′-联吡啶反应,得到哑铃型化合物——2,2′-联吡啶桥连的双-4,4′-联吡啶六氟磷酸盐(3),收率约90%。2和3的结构经1HNMR,13CNMR和MS表征。  相似文献   

3.
研究阻塞基的乙氧乙醇磺酸酯(1a~1c)与4,4'-联吡啶在熔融条件下反应合成单取代4,4'-联吡啶衍生物(2a~2c)。结果显示,在熔融条件下30min完成反应。投料比对产物有很大的影响。当投料比为1:1时,主要产物为双取代4,4'-联吡啶产物,增加4,4'-联吡啶的用量,单取代产物增加。当投料比为1:10时。单取代产物占绝对优势,分离后的收率达90%。中间体(2a~2c)与4,4'-二(溴甲基)-2,2'-联吡啶按1:1摩尔比混合,按照上述相同的方法进行反应,得到2,2'-联吡啶桥联-(4,4'-联吡啶)类哑铃型化合物(3a~3c)。收率分别为化合物3a为81%,3b为87%,3c为79%。  相似文献   

4.
在高度稀释条件下,二酰氯(1)与二氨基二苯并-18-冠-6(2)反应,以 高收率生成大环二酰胺(3),3在甲苯溶剂中用SMEAH[二(2-甲氧乙氧基)二氢 化钠铝]还原得到目标化合和-4,4′-二胺甲基联苯搭桥的二苯并-18-冠-6环状 二聚体(4)。在吡啶溶剂中4与[60]富勒烯有弱的π-电子给体-受体相互作用。  相似文献   

5.
合成1,3-二(3-羟丙基)四甲基二硅氧烷的新方法   总被引:2,自引:0,他引:2  
用二乙氧基二甲基硅烷与3-氯丙醇反应,合成了新化合物3-氯丙氧基乙氧基二甲基硅烷,然后用格氏反应代替Walter的钠缩合反应,最后经水解制备了1,3-二(3-羟丙基)四甲基二硅氧烷,总收率为42.0%。  相似文献   

6.
2,2'-联吡啶参与的分子梭合成与1H NMR研究   总被引:4,自引:0,他引:4  
2-{2-[4-苯基-二(4-特丁基苯基)甲基]苯氧基}乙氧乙醇磺酸酯(1)与4,4'-联吡啶在乙腈中回流36 h, 随后通过阴离子交换得到N-{2-{2-[4-苯基-二(4-特丁基苯基)甲基]苯氧基}乙氧乙基}-4,4'-联吡啶六氟磷酸盐(3), 产率为93.4%. 3与4,4'-二(溴甲基)-2,2'-联吡啶在乙腈中、70 ℃下反应72 h, 生成哑铃型化合物5, 产率为45%. 5与冠醚BPP34C10在55 ℃下搅拌5 d, 得到分子梭67, 产率分别为42.3%和27.3%. 1H NMR数据表明, 富电子冠醚BPP34C10与哑铃型组分上贫电子4,4'-联吡啶的非键作用使4,4'-联吡啶上氢的化学位移向高场有较大移动.  相似文献   

7.
2;3-二甲基-4-甲氧甲酰-2-环己烯醇的合成;二甲基甲氧甲酰环己烯醇;甲基甲氧甲酰环己烯酮;二甲基甲氧甲酰环己烯酮;氢化钠;氢化三叔丁氧基铝锂  相似文献   

8.
以氯乙酸为原料制得高氯酸盐,产率84%,进而与对正戊氧基苯甲脒盐酸盐相对接,全盛了2-(4-正戊氧基苯基)-5-氯-嘧啶,收率90%。通过元素分析,核磁共振谱证实了其结构。总产率75%(以氯乙酸计算)。  相似文献   

9.
将6-溴-2,2'∶6',2"-三联吡啶转化为6-甲酰基-2,2'∶6',2"-三联吡啶, 再将其与表面组装有氨基硅氧烷的石英片基反应, 使甲酰基与片基表面的氨基反应生成Schiff碱型化合物, 在氨基化片基表面成功地固定6-甲酰基-2,2'∶6',2"-三联吡啶及相应的钌配合物, 并用紫外-可见吸收光谱及光电子能谱(XPS)检测联吡啶及相应钌配合物的组装过程.  相似文献   

10.
周其凤等曾报道聚丙烯酸[2,5-双(对甲氧基苯甲酰氧基)节酯][1]和聚甲基丙烯酸[2,5-双(对甲氧基苯甲酰氧基)苄酯][2]的合成.但后来的研究发现,在合成单体的条件下出现的一种未见报道的异常反应[3]使产物成分复杂化,因此当时报道的聚合物可能不是聚丙烯酸[2,5-双-(对甲氧基苯甲酰氧基)苄酯]或聚甲基丙烯酸[2,5-双(对甲氧基苯甲酰氧基)苄酯],而可能是共聚物.针对这一问题,我们重新设计了合成路线以避免发生上述副反应,成功地合成了丙烯酸或a-甲基丙烯酸[2,5-双-(对甲氧基苯甲酰氧基…  相似文献   

11.
The reaction of diethyl ketone with 2-{2-[2-(2-formylphenoxy)ethoxy]ethoxy}benzaldehyde in acid medium at room temperature gave 43% of dibenzo(4-oxotetrahydropyrano)oxa-14-crown-4. The condensation of the same compounds in boiling ethanol in the presence of alkali involved cascade transformations leading to the formation of thermody namically more stable dibenzocrownophane which was assigned the structure of 8,9:15,16-dibenzo-1,4,7-trioxacyclohexadec-8,10,13,15-tetraen-12-one (yield 29%). Treatment of an alcoholic solution of the latter with gaseous ammonia or methylamine at 20°C afforded 73–74% of dibenzoaza-14-crowns-4 containing a 4-oxopiperidine fragment.  相似文献   

12.
The oxidative decarbonylation of the η(3)-allyl dicarbonyl complexes [Mo(η(3)-C(3)H(5))Cl(CO)(2)(L)] (L = 2,2'-bipyridine (bipy) (1), 4,4'-di-tert-butyl-2,2'-bipyridine (di-tBu-bipy) (2)) by reaction with aqueous tert-butylhydroperoxide (TBHP) or H(2)O(2) gave the following compounds in good to excellent yields: the oxo-bridged dimers [MoO(2)Cl(L)](2)O (L = bipy (3), di-tBu-bipy (6)) using TBHP(10 equiv.)/CH(3)CN/r.t.; the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (4) and the octanuclear complex [Mo(8)O(24)(di-tBu-bipy)(4)] (7) using TBHP(50 equiv.)/H(2)O/70 °C; the oxodiperoxo complexes MoO(O(2))(2)(L) (L = bipy (5), di-tBu-bipy (8)) using H(2)O(2)(10 equiv.)/CH(3)CN/r.t. The structure of 7·x(solvent) (where solvent = CH(2)Cl(2) and/or diethyl ether) was determined by single crystal X-ray diffraction. Despite possessing the same windmill-type complex as that described previously for 7·10CH(2)Cl(2), the crystal structure of 7·x(solvent) is unique due to differences in the crystal packing. Compounds 1-8 were examined as catalysts or catalyst precursors for the epoxidation of cyclooctene using aqueous TBHP or H(2)O(2) as oxidant at 55 or 70 °C. Reactions were performed without co-solvent or with the addition of water, ethanol or acetonitrile. Cyclooctene oxide was always the only reaction product. Solids recovered after 24 h reaction at 70 °C were identified by FT-IR spectroscopy as the hybrid 4 from (1,3-5)/TBHP, complex 5 from (1,3-5)/H(2)O(2), and complex 8 from (2,6-8)/H(2)O(2). With TBHP as oxidant, the highest epoxide yields (for 24 h reaction at 70 °C) were obtained using excess H(2)O as solvent (28-38% for 1,3-5; 87-98% for 2,6-8), while with H(2)O(2) as oxidant, the highest epoxide yields were obtained using CH(3)CN as solvent (54-81% for 3-8).  相似文献   

13.
The reactions of acrylonitrile (AN) with "L(2)PdMe+" species were investigated; (L(2) = CH(2)(N-Me-imidazol-2-yl)(2) (a, bim), (p-tolyl)(3)CCH(N-Me-imidazol-2-yl)(2) (b, Tbim), CH(2)(5-Me-2-pyridyl)(2) (c, CH(2)py'(2)), 4,4'-Me(2)-2,2'-bipyridine (d), 4,4'-(t)Bu(2)-2,2'-bipyridine (e), (2,6-(i)Pr(2)-C(6)H(3))N=CMeCMe=N(2,6-(i)Pr(2)-C(6)H(3)) (f)). [L(2)PdMe(NMe(2)Ph)][B(C(6)F(5))(4)] (2a-c) and [{L(2)PdMe}(2)(mu-Cl)][B(C(6)F(5))(4)] (2d-f) react with AN to form N-bound adducts L(2)Pd(Me)(NCCH=CH(2))(+) (3a-f). 3a-e undergo 2,1 insertion to yield L(2)Pd{CH(CN)Et}+, which form aggregates [L(2)Pd{CH(CN)Et}](n)(n)(+) (n = 1-3, 4a-e) in which the Pd units are proposed to be linked by PdCHEtCN- - -Pd bridges. 3f does not insert AN at 23 degrees C. 4a-e were characterized by NMR, ESI-MS, IR and derivatization to L(2)Pd{CH(CN)Et}(PR(3))+ (R = Ph (5a-e), Me (6a-c)). 4a,b react with CO to form L(2)Pd{CH(CN)Et}(CO)+ (7a,b). 7a reacts with CO by slow reversible insertion to yield (bim)Pd{C(=O)CH(CN)Et}(CO)+ (8a). 4a-e do not react with ethylene. (Tbim)PdMe+ coordinates AN more weakly than ethylene, and AN insertion of 3b is slower than ethylene insertion of (Tbim)Pd(Me)(CH(2)=CH(2))(+) (10b). These results show that most important obstacles to insertion polymerization or copolymerization of AN using L(2)PdR+ catalysts are the tendency of L(2)Pd{CH(CN)CH(2)R}+ species to aggregate, which competes with monomer coordination, and the low insertion reactivity of L(2)Pd{CH(CN)CH(2)R}(substrate)+ species.  相似文献   

14.
A new method for the synthesis of substituted 2-acylallylmetal reagents in a highly regio- and stereoselective fashion involving a three-component assembly of allenes, acyl chlorides, and bimetallic reagents (B-B, Si-Si, and Sn-Sn) catalyzed by phosphine-free palladium complexes is described. Treatment of various allenes (CR(2)R(3)=C=CH(2)) with acyl chlorides (R(1)COCl) and bispinacolatodiboron in the presence of PdCl(2)(CH(3)CN)(2) in toluene at 80 degrees C gave 2-acylallylboronates in moderate to good yields. The acylsilation of allenes with acid chlorides and hexamethyldisilane (5) proceeded successfully in the presence of Pd(dba)(2) in CH(3)CN affording the corresponding allylsilanes (CR(2)R(3)=C(COR(1))CH(2)SiMe(3)) in good to moderate yields. Several chloroformates (R(4)OCOCl) also react with 1,1-dimethylallene (2a) and 5 to afford allylsilanes (CR(2)R(3)=C(COOR(4))CH(2)SiMe(3)) in 66-70% yields. Acylstannation of allenes could also be achieved by slow addition of hexabutylditin (10) to the reaction mixture of acyl chloride (or chloroformate) and allene 2a in CH(3)CN in the presence of Pd(dba)(2) at 60 degrees C; the corresponding 2-substituted allylstannanes were isolated in moderate to good yields. The above catalytic reactions are completely regioselective and highly stereoselective. A mechanism is proposed to account for the catalytic reactions and the stereochemistry.  相似文献   

15.
四氯化钛-锌粉还原环化δ-酮腈是合成环戊酮的一种简便方法。在同样条件下, 由4-甲基-4-乙酰基庚二腈得到1,5-二甲基双环-[3.3.0]-2,8-辛二酮。  相似文献   

16.
(±)-15,19-Dimethyltritriacontane (II) — a component of the pheromone of the stable fly — has been obtained by a five-stage synthesis from dimethylcyclooctadiene (I). The coupling of 1,1-dimethoxy-4-methyl-8-oxonon-4Z-ene [the product of the ozonolysis of (I)] with n-C13H27CH=PPh3 (THF; ?30°, 2 h; 25°, 15 h; Ar) gave 1,1-dimethoxy-4,8-dimethyldocosa-4Z,8Z(E)-diene (III). The hydrolysis of (III) (TsOH·Py, H2O-Ac, boiling, 4 h) gave the corresponding aldehyde (IV). The condensation of (IV) with n-C10H21CH=PPh3 (THF; ?60° to ?30°C, 2 h, 25°C, 15 h) led to 15,19-dimethyltritriaconta-11Z(E),15Z,19Z(E)-triene (V), the exhaustive hydrogenation of which (ethanol, H2, 5% Pd/C, 25°C) gave (II). The substance, the yield in %, and Rf values are given, respectively: (II), 95, 0.92; (III), 29, 0.74; (IV), 80, 0.72; (V) 50, 0.8. The IR and PMR spectra of compounds (II)–(V) and the mass spectra of (II) and (III) are given.  相似文献   

17.
The reaction of vanadium(III) acetylacetonate with HBF4 in acetonitrile yields [(CH3CN)5V-O-V(CH3CN)5][BF4]4, a material that serves as a convenient precursor to other [V-O-V]4+ species such as [(bipy)2(CH3CN)V-O-V(CH3CN)(bipy)2][BF4]4 (bipy=2,2'-bipyridine). Single-crystal X-ray diffraction shows that the V-O-V linkage of [(CH3CN)5V-O-V(CH3CN)5]4+ is linear. An Evans method measurement of the solution-phase magnetic susceptibility indicates strong ferromagnetic coupling between the vanadium centers. Magnetic susceptibility (chi) and magnetization (M(H)) data for a powdered sample and for a single crystal oriented with its V-O-V axis parallel to the applied field were measured over 1.8-300 K. The results suggest that the V(III) centers are ferromagnetically coupled with J approximately 72 K (approximately 50 cm(-1)) yielding a ground state with a total spin Stotal=2. Theoretical fit to the M(H) plot for the single crystal yielded g||=2.01+/-0.01 and the zero-field splitting parameter D=0.60+/-0.04 K (0.42+/-0.03 cm(-1)). EPR measurements at 34 and 101.6 GHz are consistent with the Stotal=2 ground state and yield g||=1.9825, g perpendicular=1.9725 and D=0.57+/-0.03 K.  相似文献   

18.
The mixed catalyst system, Pd(CH3CN)2Cl2/P(t-Bu)3/[Ru(2,2'-bipyridine)3].2PF6, promotes the copper-free Sonogashira coupling reaction of aryl bromides at room temperature under irradiation of visible light.  相似文献   

19.
Treatment of C70 with cycloalkylaminomethylenebisphosphonates in the presence of NaH gave corresponding C70 dimers 1 in good yield, while the methanofullerenes, C70>CH(PO3Et2) (3) and C70>C(PO3Et2)2 (4) or C60>CH(PO3Et2) (5) and C60>C(PO3Et2)2 (6), were obtained, respectively, by the reaction of C70 or C60 with tetraethyl methylenediphosphonate in the presence of NaH. Diethyl cyanomethylphosphonate reacted with C60 or C70 under similar conditions to afford C60>C(PO3Et2)CN (7) and C70>C(PO3Et2)CN (8). Furthermore, the presence of weak electronic interactions between two fullerene cages of fullerene dimers was demonstrated by cyclic voltammetry. A radical mechanism was proposed for the formation of the fullerene derivatives on the basis of the ESR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号