首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The clique graph of a graph G is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques have a non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. We give a new characterization of the set of all connected self-clique graphs having all cliques but two of size 2.  相似文献   

2.
We introduce the notion of the boundary clique and the k-overlap clique graph and prove the following: Every incomplete chordal graph has two nonadjacent simplicial vertices lying in boundary cliques. An incomplete chordal graph G is k-connected if and only if the k-overlap clique graph gk(G) is connected. We give an algorithm to construct a clique tree of a connected chordal graph and characterize clique trees of connected chordal graphs using the algorithm.  相似文献   

3.
A hybrid heuristic for the maximum clique problem   总被引:1,自引:0,他引:1  
In this paper we present a heuristic based steady-state genetic algorithm for the maximum clique problem. The steady-state genetic algorithm generates cliques, which are then extended into maximal cliques by the heuristic. We compare our algorithm with three best evolutionary approaches and the overall best approach, which is non-evolutionary, for the maximum clique problem and find that our algorithm outperforms all the three evolutionary approaches in terms of best and average clique sizes found on majority of DIMACS benchmark instances. However, the obtained results are much inferior to those obtained with the best approach for the maximum clique problem.  相似文献   

4.
Finding complete subgraphs in a graph, that is, cliques, is a key problem and has many real-world applications, e.g., finding communities in social networks, clustering gene expression data, modeling ecological niches in food webs, and describing chemicals in a substance. The problem of finding the largest clique in a graph is a well-known difficult combinatorial optimization problem and is called the maximum clique problem. In this paper, we formulate a very convenient continuous characterization of the maximum clique problem based on the symmetric rank-one non-negative approximation of a given matrix and build a one-to-one correspondence between stationary points of our formulation and cliques of a given graph. In particular, we show that the local (resp. global) minima of the continuous problem corresponds to the maximal (resp. maximum) cliques of the given graph. We also propose a new and efficient clique finding algorithm based on our continuous formulation and test it on the DIMACS data sets to show that the new algorithm outperforms other existing algorithms based on the Motzkin–Straus formulation and can compete with a sophisticated combinatorial heuristic.  相似文献   

5.
The maximum edge weight clique (MEWC) problem, defined on a simple edge-weighted graph, is to find a subset of vertices inducing a complete subgraph with the maximum total sum of edge weights. We propose a quadratic optimization formulation for the MEWC problem and study characteristics of this formulation in terms of local and global optimality. We establish the correspondence between local maxima of the proposed formulation and maximal cliques of the underlying graph, implying that the characteristic vector of a MEWC in the graph is a global optimizer of the continuous problem. In addition, we present an exact algorithm to solve the MEWC problem. The algorithm is a combinatorial branch-and-bound procedure that takes advantage of a new upper bound as well as an efficient construction heuristic based on the proposed quadratic formulation. Results of computational experiments on some benchmark instances are also presented.  相似文献   

6.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. We have recently shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. A greedy max-clique decomposition is a particular kind cf greedy clique decomposition where maximum cliques are removed, instead of just maximal ones. In this paper, we show that any greedy max-clique decompositionC of a graph of ordern has, wheren(C) is the number of vertices inC.  相似文献   

7.
Chordal graphs were characterized as those graphs having a tree, called clique tree, whose vertices are the cliques of the graph and for every vertex in the graph, the set of cliques that contain it form a subtree of clique tree. In this work, we study the relationship between the clique trees of a chordal graph and its subgraphs. We will prove that clique trees can be described locally and all clique trees of a graph can be obtained from clique trees of subgraphs. In particular, we study the leafage of chordal graphs, that is the minimum number of leaves among the clique trees of the graph. It is known that interval graphs are chordal graphs without 3-asteroidals. We will prove a generalization of this result using the framework developed in the present article. We prove that in a clique tree that realizes the leafage, for every vertex of degree at least 3, and every choice of 3 branches incident to it, there is a 3asteroidal in these branches.  相似文献   

8.
In Balas and Niehaus (1996), we have developed a heuristic for generating large cliques in an arbitrary graph, by repeatedly taking two cliques and finding a maximum clique in the subgraph induced by the union of their vertex sets, an operation executable in polynomial time through bipartite matching in the complement of the subgraph. Aggarwal, Orlin and Tai (1997) recognized that the latter operation can be embedded into the framework of a genetic algorithm as an optimized crossover operation. Inspired by their approach, we examine variations of each element of the genetic algorithm—selection, population replacement and mutation—and develop a steady-state genetic algorithm that performs better than its competitors on most problems.  相似文献   

9.
The maximum clique problem involves finding the largest set of pairwise adjacent vertices in a graph. The problem is classic but still attracts much attention because of its hardness and its prominent applications. Our work is based on the existence of an order of all the vertices whereby those belonging to a maximum clique stay close enough to each other. Such an order can be identified via the extraction of a particular subgraph from the original graph. The problem can consequently be seen as a permutation problem that can be addressed efficiently by metaheuristics. We first design a memetic algorithm (MA) for this purpose. Computational experiments conducted on the DIMACS benchmark instances clearly show that our MA not only outperforms existing genetic approaches, but it also compares very well to state-of-the-art algorithms regarding the maximal clique size found after different runs. Furthermore, we show that a hybridization of MA with an iterated local search (ILS) improves the stability of the algorithm. This hybridization (MA-ILS) permits to find two distinct maximal cliques of size 79 and one of size 80 for the C2000.9 instance of the DIMACS benchmark.  相似文献   

10.
A biclique cutset is a cutset that induces the disjoint union of two cliques. A hole is an induced cycle with at least five vertices. A graph is biclique separable if it has no holes and each induced subgraph that is not a clique contains a clique cutset or a biclique cutset. The class of biclique separable graphs contains several well‐studied graph classes, including triangulated graphs. We prove that for the class of biclique separable graphs, the recognition problem, the vertex coloring problem, and the clique problem can be solved efficiently. Our algorithms also yield a proof that biclique separable graphs are perfect. Our coloring algorithm is actually more general and can be applied to graphs that can be decomposed via a special type of biclique cutset. Our algorithms are based on structural results on biclique separable graphs developed in this paper. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 277–298, 2005  相似文献   

11.
In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques of the graph) which is also called a flag complex, and investigate the minimum number k such that the clique complex of a given graph can be represented as the intersection of k matroids. This number k can be regarded as a measure of “how complex a graph is with respect to the maximum weighted clique problem” since a greedy algorithm is a k-approximation algorithm for this problem. For any k>0, we characterize graphs whose clique complexes can be represented as the intersection of k matroids. As a consequence, we can see that the class of clique complexes is the same as the class of the intersections of partition matroids. Moreover, we determine how many matroids are necessary and sufficient for the representation of all graphs with n vertices. This number turns out to be n-1. Other related investigations are also given.  相似文献   

12.
A graph G is said to be very strongly perfect if for each induced subgraph H of G, each vertex of H belongs to a stable set that meets all maximal cliques of H. Meyniel proved that a graph is perfect if each of its odd cycles with at least five vertices contains at least two chords. Nowadays, such a graph is called a Meyniel graph. We prove that, as conjectured by Meyniel, a graph is very strongly perfect if and only if it is a Meyniel graph. We also design a polynomial-time algorithm which, given a Meyniel graph G and a vertex x of G, finds a stable set that contains x and meets all maximal cliques of G. We shall convert this algorithm into another polynomial-time algorithm which, given a Meyniel graph G, finds an optimal coloring of G, and a largest clique of G. Finally, we shall establish another property, related to perfection, of Meyniel graphs.  相似文献   

13.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

14.
A clique is a maximal complete subgraph of a graph. Moon and Moser obtained bounds for the maximum possible number of cliques of different sizes in a graph ofn vertices. These bounds are improved in this note.  相似文献   

15.
We color the nodes of a graph by first applying successive contractions to non-adjacent nodes until we get a clique; then we color the clique and decontract the graph. We show that this algorithm provides a minimum coloring and a maximum clique for any Meyniel graph by using a simple rule for choosing which nodes are to be contracted. This O(n3) algorithm is much simpler than those already existing for Meyniel graphs. Moreover, the optimality of this algorithm for Meyniel graphs provides an alternate nice proof of the following result of Hoàng: a graph G is Meyniel if and only if, for any induced subgraph of G, each node belongs to a stable set that meets all maximal cliques. Finally we give a new characterization for Meyniel graphs.  相似文献   

16.
A caterpillar graph is a tree in which the removal of all pendant vertices results in a chordless path. In this work, we determine the number of maximal independent sets (mis) in caterpillar graphs. For a general graph, this problem is #Pcomplete. We provide a polynomial time algorithm to generate the whole family of mis in a caterpillar graph. We also characterize the independent graph (intersection graph of mis) and the clique graph (intersection graph of cliques) of complete caterpillar graphs.  相似文献   

17.
The min-edge clique partition problem asks to find a partition of the vertices of a graph into a set of cliques with the fewest edges between cliques. This is a known NP-complete problem and has been studied extensively in the scope of fixed-parameter tractability (FPT) where it is commonly known as the Cluster Deletion problem. Many of the recently-developed FPT algorithms rely on being able to solve Cluster Deletion in polynomial time on restricted graph structures.  相似文献   

18.
《Discrete Mathematics》2023,346(6):113370
The edge blow-up of a graph is the graph obtained from replacing each edge of it by a clique of the same size where the new vertices of the cliques are all different. Wang, Hou, Liu and Ma determined the Turán number of the edge blow-up of trees except one particular case. Answering a problem posed by them, we determined the Turán number of this particular case.  相似文献   

19.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. It has recently been shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. In this paper, we extend this result by showing that for any positive integerp, 3≤p any clique decomposisitioof a graph of ordern obtained by removing maximal cliques of order at leastp one by one until none remain, in which case the remaining edges are removed one by one, has at mostt p-1( n ) cliques. Heret p-1( n ) is the number of edges in the Turán graph of ordern, which has no complete subgraphs of orderp. In connection with greedy clique decompositions, P. Winkler conjectured that for any greedy clique decompositionC of a graphG of ordern the sum over the number of vertices in each clique ofC is at mostn 2/2. We prove this conjecture forK 4-free graphs and show that in the case of equality forC andG there are only two possibilities:
  1. G?K n/2,n/2
  2. G is complete 3-partite, where each part hasn/3 vertices.
We show that in either caseC is completely determined.  相似文献   

20.
设 G=(V,E) 为简单图,图 G 的每个至少有两个顶点的极大完全子图称为 G 的一个团. 一个顶点子集 S\subseteq V 称为图 G 的团横贯集, 如果 S 与 G 的所有团都相交,即对于 G 的任意的团 C 有 S\cap{V(C)}\neq\emptyset. 图 G 的团横贯数是图 G 的最小团横贯集所含顶点的数目,记为~${\large\tau}_{C}(G)$. 证明了棱柱图的补图(除5-圈外)、非奇圈的圆弧区间图和 Hex-连接图这三类无爪图的团横贯数不超过其阶数的一半.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号