首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution of Wheeler-De Witt Equation, Potential Well and Tunnel Effect   总被引:2,自引:0,他引:2  
This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-De Witt equation, gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it fit with the physics of cosmic quantum birth. By solving Wheeler-De Witt equation we achieve a general probability distribution of the cosmic birth, and give the analysis of cosmic quantum birth.  相似文献   

2.
Following the idea that the global and local arrow of time has a cosmological origin, we define an entropy in the classical and in the quantum periods of the universe evolution. For the quantum period a semi-classical approach is adopted, modelling the universe with Wheeler-De Witt equation and using WKB. By applying the self-induced decoherence to the state of the universe it is proved that the quantum universe becomes a classical one. This allows us to define a conditional entropy which, in our simplified model, is proportional to e 2γ t where γ is the dumping factor associated with the interaction potential of the scalar fields. Finally we find both Gibbs and thermodynamical entropy of the universe based in the conditional entropy.  相似文献   

3.
The quantization of the most general Type II geometry (having all six scale factors as well as the shift vector) is considered. The information carried by the linear constraints is used to reduce the initial Wheeler-De Witt equation (in six variables) to a final PDE in four variables. The full space of solutions to this equation is exhibited.  相似文献   

4.
YAN Jun 《理论物理通讯》2006,46(2):239-240
The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.  相似文献   

5.
The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dimensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.  相似文献   

6.
7.
《Physics letters. [Part B]》1997,415(3):231-235
We show that a Polyakov fermionic string functional integral in the presence of the external spatial Ashtekar-Sen connection solves the Wheeler-De Witt equation of Einstein gravitation theory written in terms of the Ashtekar-Sen variables.  相似文献   

8.
A Bianchi I model of the Universe filled with interacting nonlinear spinor and scalar fields is studied within quantum geometrodynamics. Three types of interaction are considered: gradient, Yukawa, and axion ones. For massless fermion fields, the variables in the Wheeler – de Witt equation will separate. The solution can be interpreted using a two-component perfect liquid. One component corresponds to a massless scalar field, while the other – to a nonlinear spinor field. The interaction between the spinor and scalar fields can lead to elimination of singularity of the wave function. There is a possibility of existence of a discrete spectrum of the quantum Universe, as well as tunneling from the region with a rigorous equation of state to the region of the de Sitter vacuum.  相似文献   

9.
本文利用Hawking-Page的边界条件讨论了具有费米场的量子虫洞,导出了相应的Wheeler-DeWitt方程,计算了虫洞波函数,由虫洞波函数的分析,发现虫洞在a=0处出现几率密度为零,虫洞基态最可几半径为Planck尺度.  相似文献   

10.
11.
We present some results concerning the large volume limit of loop quantum cosmology in the flat homogeneous and isotropic case. We derive the Wheeler–De Witt equation in this limit. Looking for the action from which this equation can also be obtained, we then address the problem of the modifications to be brought to the Friedman’s equation and to the equation of motion of the scalar field, in the classical limit.  相似文献   

12.
In this paper, we study the scalar fields evolving on a FRW brane embedded in a five-dimensional de Sitter bulk. The scale function and the warp factor, solutions of the Einstein equations, are employed in the five-dimensional Gordon equation describing the massive scalar field, whose wave function depends on the cosmic time and on the extra-dimension. We point out the existence of bounded states and find a minimum value of the effective four-dimensional mass. For the test (scalar) field envelope along the extra-dimension, we derive the corresponding Schrödinger-like equation which is formally that for the Pöschl-Teller potential. Accordingly, we have obtained the quantization law for the mass parameter of the tested scalar field.  相似文献   

13.
A new “twice loose shoe“ method in the Wheeler-DeWitt equation of the universe wavefunction on the cosmic scale factor a and a scalar field φ is suggested,We analyze both the affections coming from the tunnelling effect of α and the potential well effect of φ,and obtain the initial values α0 about a primary closed universe which is born with the largest probability in the quantum manner,Our result is able to overcome the “large field difficulty“ of the universe quantum creation probabiltiy with only tunnelling effect.This new born universe has to suffer a startup of inflation,and then comes into the usual slow rolling inflation.The universe with the largest probalility maybe has a “gentle“ inflation of an eternal chaotic infltion.this depends on a new parameter q which describes the tunnelling character.  相似文献   

14.
A quantum cosmological model with radiation and a dilaton scalar field is analyzed. The Wheeler–DeWitt equation in the minisuperspace induces a Schrödinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time-dependent, a Bohmian analysis allows to extract a bouncing behavior for the scale factor.  相似文献   

15.
高长军  沈有根 《中国物理》2003,12(4):371-376
We present the classical solution of Lagrange equations for the black hole with a global monopole or with a cosmic string. Then we obtain the wavefunction of the space-time by solving the Wheeler-De Witt equation. De Broglie-Bohm interpretation applied to the wavefunction gives the quantum solution of the space-time. In the end, the quantum effect on Hawking radiation is studied.  相似文献   

16.
《Physics Reports》1997,286(5):271-348
In this paper we will make a survey of solutions to the Wheeler-De Witt equation which have been found up to now in Ashtekar's formulation for canonical quantum gravity. Roughly speaking they are classified into two categories, namely, Wilson-loop solutions and topological solutions. While the program of finding solutions which are composed of Wilson loops is still in its infancy, it is expected to be developed in the near future. Topological solutions are the only solutions at present which can be interpreted in terms of spacetime geometry. While the analysis made here is formal in the sense that we do not deal with rigorously regularized constraint equations, these topological solutions are expected to exist even in the fully regularized theory and they are considered to yield vacuum states of quantum gravity. We also make an attempt to review the spin network states as intuitively as possible. In particular, the explicit formulae for two kinds of measures on the space of spin network states are given.  相似文献   

17.
Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries.  相似文献   

18.
In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.  相似文献   

19.
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.  相似文献   

20.
In this Letter we study a model of interaction between the scalar field and an inhomogeneous ideal fluid. We have considered two forms of the ideal fluid and a power law expansion for the scale factor. We have solved the equations for the energy densities. Also we show that besides being a dark energy model to explain the cosmic acceleration, this model shows a decaying nature of the scalar field potential and the interaction parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号