首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Let W(F) = φ(λ 1 s + λ 2 s + λ 3 s ) + ψ(λ 1 r λ 2 r + λ 1 r λ 3 r + λ 2 r λ 3 r ) + f(λ 1 λ 2 λ 3) be a stored energy function. We prove that, for this function, rank-one convexity is equivalent to polyconvexity.under suitable assumptions on φ, ψ and f.  相似文献   

2.
A general theorem that guarantees the existence of an orbit connecting two hyperbolic equilibria of a parametrized autonomous differential equation in \({\mathbb {R}}^n\) near a suitable approximate connecting orbit given the invertibility of a certain explicitly given matrix is proved. Numerical implementation of the theorem is described using five examples including two Sil’nikov saddle-focus homoclinic orbits and a Sil’nikov saddle-focus heteroclinic cycle.  相似文献   

3.
We study the question of positivity of quadratic funtionals which typically arise as the second variation at a critical point u of a functional. For interior points x1∈ Ω rank-one convexity of C0(x1) is a necessary condition for u to be a local minimizer. For boundary points x2∈ ∂ Ω where ϕ is allowed to vary freely the stronger condition of quasiconvexity at the boundary is necessary. For quadratic functionals this condition is roughly equivalent to rank-one convexity and Agmon's condition. We derive an equivalent condition on C0(x2) which is purely algebraic; and, moreover, it is variational in the sense that it can be formulated in terms of positive semidefiniteness of Hermitian matrices. A connection to the solvability of matrix-valued Riccati equations is established. Several applications in elasticity theory are treated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
提出了圆板弹塑性弯曲的简单样条积分方程法.以径向转角作为未知量建立积分方程并结合B样条函数进行求解.这一方法具有域积分容易处理、精度高和计算简单的优点.计算结果表明本文解与文[2]解吻合良好.  相似文献   

5.
We investigate probability distributions in dynamic multi-mode electromagnetic cavities, commonly referred to as mode-stirred reverberation chambers. We show that Bessel KK and Bessel II distributions play a prominent role when a large but finite number of excited modes, loss of energy (through aperture leakage or dissipation), or nonstationary transient fields are involved. With the aim at reducing the number of simultaneously excited cavity modes as much as possible while maintaining a well-characterizable quasi-random field, measurement results indicate that single-mode stirring is feasible at certain frequencies well below the usual ‘lowest usable frequency’ of the cavity. Distributions for nonstationary fields are shown to allow for improved estimation of the maximum-to-mean ratio of the received power during stepwise rotation of the mode stirrer.  相似文献   

6.
A methodology for the decomposition of the Crouzeix-Raviart finite element into six linear subelements is described. The resulting element is shown to satisfy the Brezzi-Babu?ka compatibility condition. The error bounds are also established. A comparison in accuracy between this and the standard Crouzeix-Raviart element is presented for driven cavity flows. Other results include the execution time for the DCR element and the Crouzeix-Raviart element along with both analytical and numerical integration. It is shown that the decomposed element results in shorter execution times with only marginal changes in accuracy.  相似文献   

7.
Given a quaternion representation of a spherical motion of a rigid body with respect to another body, acting as a reference frame, this contribution presents a simple and straightforward method for determining both the angular velocity and angular acceleration of the moving body with respect to the reference frame. Instead of employing orthogonal matrices or their linear invariants, this contribution makes use of quaternions avoiding, in this way, the series of matrix identities or theorems that are required in a pair of previous approaches.  相似文献   

8.
The main focus of this work is to model macroscopically the effects of partial saturation upon the permeability of dual scale fibrous media made of fiber bundles when a Newtonian viscous fluid impregnates it. A new phenomenological model is proposed to explain the discrepancies between experimental pressure results and analytical predictions based on Darcy's law. This model incorporates the essential features of relative permeability but without the necessity of measuring saturation of the liquid for its prediction. The model is very relevant for the small scale industrial systems where a liquid is forced to flow through a fibrous porous medium. It requires four parameters. Two of them are the two permeability values based on the two length scales. One length scale is of the order of magnitude of the individual fiber radius and corresponds to the permeability of the completely staurated medium, the other is of the order of magnitude of the distance between the fiber bundles and corresponds to the permeability of the partially saturated medium. The other two parameters are the lengths of the two partially saturated regions of the flow domain. The two lengths of the partially saturated region and the permeability of the fully saturated flow domain can be directly measured from the experiments. The excellent agreement between the model and the experimental results of inlet pressure profile with respect to time suggests that this model may be used to describe the variation of the permeability behind a moving front in such porous media for correct pressure prediction. It may also be used to characterize the fibrous medium by determining the two different permeabilities and the relative importance of the unsaturated portion of the flow domain for a given architecture.  相似文献   

9.
A three‐dimensional, fully non‐linear semi‐diagnostic (adaptation) model is described. This model is used to compute the climatological mean circulation and to understand the role of local, steady forcing of the wind and thermohaline forcing on the observed circulation in the western tropical Indian Ocean. The model consists of equations of motion and continuity, sea surface topography, equations of state and temperature, and salinity diffusion equations. While the sea surface topography equation is solved by a successive overrelaxation technique, the other model equations are solved by a leap‐frog numerical scheme. Two versions of the model, having 18 and 33 levels in the vertical direction, were prepared to study climatological mean circulation in the western tropical Indian Ocean. The first numerical experiment is carried out with the 18‐level adaptation model to study the sensitivity of the solution to different values of eddy coefficients. The main scientific rationale behind these numerical experiments was to obtain the most appropriate values of the eddy coefficients for the realistic computation of climatological circulation in the western tropical Indian Ocean. Three numerical experiments were conducted for the month of February to understand the sensitivity of the model solution to different eddy coefficients. The model reproduced the circulation features during February, even with low values of horizontal and vertical eddy coefficients. In the second experiment, the adaptation model, with 33 levels in the vertical direction, is applied to study the seasonal mean climatological circulation at selected depths during Spring in the western tropical Indian Ocean. Adapted (steady state) results of currents, sea surface topography, temperature and salinity anomaly fields are presented. Reasonable agreement is obtained between the model results on currents and the observational data. The computed anomaly fields for temperature and salinity at selected depths during Spring show that the observed temperature and salinity data were adapted with surface wind, flow field and bottom relief of the ocean and that the observed data were found to be fully smoothed during the adaptation stage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The observed phenomenon of slip between the layers of a flowing slurry is modelled mathematically by a finite-element-based numerical technique. This technique enables us to quantify variables such as the slip velocity and shear stress distribution at the interlayer boundary and the pressure drop within the flow domain.  相似文献   

11.
This paper presents a new approach for the detection and treatment of colloidal particle collisions. It has been developed in the framework of Lagrangian approaches where a large number of particles is explicitly tracked. The key idea is to account for the continuous trajectories of both colliding partners during a time step that is not restricted. Unlike classical approaches which consider only the distances between a pair of particles at the beginning and at the end of each time step (or assume straight-line motion in between), we model the whole relative, and possibly diffusive, trajectory. The collision event is dealt with using the probability that the relative distance reaches a minimum threshold (equal to the sum of the two particle radii). In that sense, the present paper builds on the idea of a previous work. However, in this first work, the collision event was simulated with a simplified scheme where one of the collision partners was removed and re-inserted randomly within the simulation domain. Though usually applied, this treatment is limited to homogeneous situations. Here, an extension of the stochastic model is proposed to treat more rigorously the collision event via a suitable evaluation of the time and spatial location of the collision and an adequate calculation of subsequent particle motion. The resulting collision kernels are successfully compared to theoretical predictions in the case of particle diffusive motion. With these promising results, the feasibility of simulating the collisional regime over a whole range of particle sizes (even nanoscopic) and time steps (from a ballistic to a purely diffusive regime) with a numerical method of reasonable computational cost has been confirmed. The present approach thus appears as a good candidate for the simulation of the agglomeration phenomenon between particles also in complex non-homogeneous flows.  相似文献   

12.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号