首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABSTRACT

Deep-ultraviolet continuous-wave photoluminescence spectroscopy is performed for nano-polycrystalline diamond (NPD) synthesized by a high pressure high-temperature technique. NPD exhibits clear deep-ultraviolet emissions, which originate from intrinsic excitonic transitions assisted by a momentum-conserving phonon with a photon. Surprisingly, the peak emission energy is about 30?meV higher than that of the single-crystalline diamond. Raman scattering spectroscopy indicates that the energy difference should originate from the excitonic properties of the NPD and not the phonon. Hence, NPD has a large bandgap compared to single-crystalline diamond.  相似文献   

2.
《Infrared physics》1992,33(6):459-462
Epitaxial films of YBCO superconductors whose C axes are primarily perpendicular to the film surface, were prepared. The samples, which were treated by means of a gettered annealing technique, were investigated by the X-ray diffraction pattern method (XRD) and infrared (IR) reflectance spectra in the 140–800 cm−1 spectral range. The strengths of the phonon structures are influenced greatly by the superconductivity of the sample, which can be determined by the annealing conditions. The relation between the resulting IR activity of phonons and the superconductivity is clear and the important role of phonons in superconductivity is demonstrated.  相似文献   

3.
The Green's function technique, suitable for analyses of spatially deformed structures, is developed in this paper and applied to phonon system. The thermodynamic and kinetic phonon properties of cylindrical quantum dots are analysed using a developed method. As a consequence of the applied new method the configurational dependence of diffusion coefficient and dot's density were included into calculations. Maximum of diffusion and minimum of density is located in central part of the cylindrical quantum dot. All thermodynamic and kinetic characteristics of quantum dot are exponentially small at low temperatures. The low phonons specific heat as well as the low thermal conductivity lead to conclusion that in cylindrical quantum dots exist more convenient conditions for appearance of electron superconductivity.  相似文献   

4.
The recently discovered anisotropic superconductor MgB2 is the first of its kind showing the intriguing properties of two-band superconductivity. By tunneling experiments using thin film tunnel junctions, electron-coupled phonon spectra were determined showing that superconductivity in MgB2 is phonon mediated. In a further analysis, which involves first principles calculations, the strongest feature in these spectra could be traced back to the key quantity of two-band superconductivity, the interband pairing interaction. For the phonons, this interaction turns out quite selective. It involves mainly low-energy optical phonon modes, where the boron atoms move perpendicular to the boron planes.  相似文献   

5.
A careful numerical calculation is reported searching for two phonon bound states in diamond and germanium. Using the experimental phonon dispersion in germanium and an improved force model for diamond we examined the two phonon Green function for a bound state pole, working in a formulation in which Rayleigh's theorems can be used. Our results are consistent with the possibility of a bound state in diamond and germanium.  相似文献   

6.
Nano-diamond films composed of 3–5 nm grains prepared by the detonation method and spray deposited onto silicon substrates were examined by high resolution electron energy loss spectroscopy (HR-EELS), Raman spectroscopy and transmission electron microscopy. The HR-EEL spectrum of the annealed and hydrogenated films displays dominant C–H losses at 360–365 meV; the diamond optical phonon and its overtones. These results suggest that the films reveal well defined hydrogenated diamond surfaces on the nanometric scale. Detailed analysis of the diamond optical phonon overtone revealed a red-shift of the basic C–C vibration by 5 meV. We attribute this shift to a phonon quantum confinement effect detected by HR-EELS spectroscopy.  相似文献   

7.
应用全势线性缀加平面波方法计算新超导体CaAlSi的电子能带结构,用带心冻结声子法计算了声子频率及电声子耦合常数,并讨论了它们的超导电性.考虑到Al,Si原子分布的无序性和完全等价性,我们采用了双层超格子原胞模型,并考虑了低频B1g1声子频率的非谐性效应.由此计算得到稳定的低频B1g1声子频率为110cm-1,对超导电性有较大的贡献的Cad态电子与B1g1振动模式间的电声子耦合常数为0.37.我们的结果与用虚晶近似的结果是一致的.并证明CaAlSi的超导电性可由中等耦合的BCS理论来解释.  相似文献   

8.
We report the discovery of superconductivity below 1.65(6) K in Sr-intercalated graphite SrC(6), by susceptibility and specific heat (C(p)) measurements. In comparison with CaC(6), we found that the anisotropy of the upper critical fields for SrC(6) is much reduced. The C(p) anomaly at T(c) is smaller than the BCS prediction, indicating an anisotropic superconducting gap for SrC6 similar to CaC6. The significantly lower T(c) of SrC(6) as compared to CaC(6) can be understood in terms of "negative" pressure effects, which decreases the electron-phonon coupling for both in-plane intercalant and the out-of-plane C phonon modes. We observed no superconductivity for BaC(6) down to 0.3 K.  相似文献   

9.
本文提出了多声子过程的强耦合超导理论,给出了能隙方程和Tc公式。结果发现,考虑电子多声子过程,高频声子对提高Tc有重要作用,单胞中对超导贡献的简并度数大,也有利于高Tc的出现。 关键词:  相似文献   

10.
Using density functional theory, we demonstrate that superconductivity in C6Ca is phonon mediated with lambda = 0.83 and phonon frequency (omega)log = 24.7 meV. The calculated isotope exponents are alpha(Ca) = 0.24 and alpha(C) = 0.26. Superconductivity is due mostly to C vibrations perpendicular and Ca vibrations parallel to the graphite layers. Since the electron-phonon couplings of these modes are activated by the presence of an intercalant Fermi surface, the occurrence of superconductivity in graphite intercalated compounds requires a noncomplete ionization of the intercalant.  相似文献   

11.
金刚石氮-空位色心结构因在量子精密测量领域的高灵敏度优势而备受关注.本文引入耦合声子场对氮-空位色心原子自旋进行共振调控,以提高氮-空位色心的自旋跃迁效率.首先,基于波函数和晶格的点阵位移矢量关系,分析了声子与晶格能量交互作用,研究了基于声子共振调控的氮-空位色心的自旋跃迁机理,建立了基于应变诱导的能量转移声子-自旋交互耦合激发模型.其次,基于氮-空位色心晶格振动理论,引入满足布洛赫定理的系数矩阵,建立了不同轴向氮-空位色心第一布里渊区特征区域的声子谱模型.同时,基于德拜模型,考虑热膨胀效应,解析该声子共振系统的声子热平衡性质,并对其比热模型进行研究.最后,基于分子动力学仿真软件CASTEP和密度泛函理论进行第一性原理研究,构建了声子模式下不同轴向氮-空位色心的结构优化模型,并分析了其结构特性、声子特性和热力学特性.研究结果表明,系统声子模式的演化依赖于氮-空位的占位,声子模式强化伴随着热力学熵的降低.含氮-空位色心金刚石的共价键较纯净无缺陷金刚石更弱,热力学性质更不稳定.含氮-空位色心金刚石的声子主共振频段处于THz量级,次共振频率约为[800,1200]MHz.根据次共振频段设计叉指宽度为1.5μm的声表面波共振机构,其中心频率约为930 MHz.在该声子共振调控参数条件下,声子共振调控方法可有效增大氮-空位色心的自旋跃迁概率,实现氮-空位色心原子自旋操控效率的提高.  相似文献   

12.
The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch — KK-S model and (b) between different phonon branches — KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and diamond with natural isotopes and highly enriched isotopes. It is observed that the consideration of the normal scattering processes involving different phonon branches gives better results for the temperature dependence of the thermal conductivity of germanium, silicon and diamond with natural and highly enriched isotopes. Also, the estimation of the lattice thermal conductivity of germanium and silicon for these models with the consideration of quadratic form of frequency dependences of phonon wave vector leads to the conclusion that the splitting of longitudinal and transverse phonon modes, as suggested by Holland, is not an essential requirement to explain the entire temperature dependence of lattice thermal conductivity whereas KK-H model gives a better estimation of the thermal conductivity without the splitting of the acoustic phonon modes due to the dispersive nature of the phonon dispersion curves.   相似文献   

13.
Using the linear response-linearized Muffin-tin orbital (LR-LMTO) method, we study the electronic band structure, phonon spectra, electron-phonon coupling and superconductivity for c-axis ferromagnetic-like (F-like) and antiferromagnetic-like (AF-like) structures in ternary silicide CaAlSi. The following conclusions are drawn from our calculations. If Al and Si atoms are assumed to arrange along the c axis in an F-like long-range ordering (-Al-Al-Al-and-Si-Si-Si-), one could obtain the ultrasoft B1g phonon mode and thus very strong electron-phonon coupling in CaAlSi. However, the appearance of imaginary frequency phonon modes indicates the instability of such a structure. For Al and Si atoms arranging along the c axis in an AF-like long-range ordering (-Al-Si-Al-), the calculated electron-phonon coupling constant is equal to 0.8 and the logarithmically averaged frequency is 146.8 K. This calculated result can correctly yield the superconducting transition temperature of CaAlSi by the standard BCS theory in the moderate electron-phonon coupling strength. We propose that an AF-like superlattice model for Al (or Si) atoms along the c direction may mediate the inconsistency estimated from theory and experiment, and explain the anomalous superconductivity in CaAlSi.   相似文献   

14.
Motivated by predictions of a substantial contribution of the "buckling" vibration of the CuO(2) layers to d-wave superconductivity in the cuprates, we have performed an inelastic neutron scattering study of this phonon in an array of untwinned crystals of YBa(2)Cu(3)O(7). The data reveal a pronounced softening of the phonon at the in-plane wave vector q=(0,0.3) upon cooling below ~105 K, but no corresponding anomaly at q=(0.3,0). Based on the observed in-plane anisotropy, we argue that the electron-phonon interaction responsible for this anomaly supports an electronic instability associated with a uniaxial charge-density modulation and does not mediate d-wave superconductivity.  相似文献   

15.
We show that the 50% increase of the room-temperature thermal conductivity of single-crystal diamond [1] upon increasing its isotopic purity is unlikely to be due to a decrease in phonon-isotope scattering alone. In addition, removal of the13C isotope can sharpen the phonon dispersion in a heretofore unappreciated way and thereby decrease the phonon-phonon Umklapp scattering enough to cause the observed results. In addition, the order-of-magnitude increase [1] in the UV damage threshold in the isotopically purer diamond is probably caused by similar effects. In fact, all physical processes wherein phonon wave-vector or energy thresholds are important should be affected by this mechanism.  相似文献   

16.
The physical aspects of the influence of the elastic energy anisotropy of crystals on the anisotropy of the mean free paths of phonons in single-crystal films of germanium, silicon, and diamond in the diffuse scattering of phonons at the boundaries of the samples have been considered. It has been shown that, for sufficiently wide films of germanium, silicon, and diamond with the {100} and {111} orientations and the lengths of less than or equal to their width, the phonon mean free paths are isotropic (independent of the direction of the temperature gradient in the plane of the film). The anisotropy of the phonon mean free paths depends primarily on the orientation of the film plane and is determined by the focusing and defocusing of phonon modes. For single-crystal films of germanium, silicon, and diamond with the {100} and {111} orientations and lengths much larger than their width, the phonon mean free paths are anisotropic.  相似文献   

17.
We substantiate by numerical and analytical calculations that the recently discovered superconductivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as in MgB2, albeit in three dimensions. Holes at the top of the zone-centered, degenerate sigma-bonding valence-band couple strongly to the optical bond-stretching modes. The increase from two to three dimensions reduces the mode softening crucial for T(c) reaching 40 K in MgB2. Even if diamond had the same bare coupling constant as MgB2, which could be achieved with 10% doping, T(c) would be only 25 K. Superconductivity above 1 K in Si (Ge) requires hole doping beyond 5% (10%).  相似文献   

18.
We have measured phonon dispersion relations of the high-pressure phase cerium-oC4 (α' phase with the α-uranium crystal structure) at 6.5 GPa by using inelastic x-ray scattering. Pronounced phonon anomalies are observed, which are remarkably similar to those of α-U. First-principles electronic structure calculations reproduce the anomalies and allow us to identify strong electron-phonon coupling as their origin. At the low-pressure end of its stability range, Ce-oC4 is on the verge of a lattice-dynamical instability and possibly a charge density wave. The superconducting transition temperatures of the fcc, oC4, and mC4 phases of Ce have been calculated, and the superconductivity observed experimentally by Wittig and Probst is attributed to the oC4 phase.  相似文献   

19.
The temperature dependent phonon resistivity of the nearly stoechiometric PdH compound has been measured. The results can be explained in terms of two phonon branches, an acoustical one primarily determined by the Pd lattice and an optical one determined by the hydrogen lattice. Some implications concerning the occurence of superconductivity in this system have also been drawn.  相似文献   

20.
Generation and detection of very high frequency acoustic phonons in diamond is reported. We generate phonons at a frequency of 28 THz by defect-induced one-phonon absorption of CO2 laser radiation and observe, after pulsed excitation, phonon decay products in the frequency range from 1 THz to 7 THz. For detection vibronic sideband spectroscopy is used. We find strongly frequency dependent lifetimes for frequencies above 4 THz which we attribute to spontaneous phonon decay.Dedicated to K. Dransfeld on occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号