首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We suggest a semiempirical approach to describing the influence of local nonlinear dipole-dipole interactions on the formation of van der Waals complexes of 1: 1 composition in the gas phase. Based on this approach, we quantitatively interpret the experimental data on the patterns of the shift in the electronic (complexes of a 3-aminophthalimide molecule with water and methanol molecules) and vibrational (complexes of a HCl molecule with acetone and acetonitrile molecules) absorption spectra attributable to the processes of complex formation. We confirm the conclusion that a nonlinear dipole-dipole interaction should be considered as one of the most important physical mechanisms that result in the association of molecules both in the gas phase and, under certain conditions, in the condensed state.  相似文献   

2.
In the laser excitation of ultracold atoms to Rydberg states, we observe a dramatic suppression caused by van der Waals interactions. This behavior is interpreted as a local excitation blockade: Rydberg atoms strongly inhibit excitation of their neighbors. We measure suppression, relative to isolated atom excitation, by up to a factor of 6.4. The dependences of this suppression on both laser irradiance and atomic density are in good agreement with a mean-field model. These results are an important step towards using ultracold Rydberg atoms in quantum information processing.  相似文献   

3.
We demonstrate two schemes for the coherent excitation of Rydberg atoms in an ultracold gas of rubidium atoms employing the three-level ladder system 5S1/2-5P3/2-n?j. In the first approach rapid adiabatic passage with pulsed laser fields yields Rydberg excitation probabilities of 90% in the center of the laser focus. In a second experiment two-photon Rydberg excitation with continuous-wave fields is applied which results in Rabi oscillations between the ground and Rydberg state. The experiments represent a prerequisite for the control of interactions in ultracold Rydberg gases and the application of ultracold Rydberg gases for quantum information processing.  相似文献   

4.
It is shown that the two-step excitation scheme typically used to create an ultracold Rydberg gas can be described with an effective two-level rate equation, greatly reducing the complexity of the optical Bloch equations. This allows us to efficiently solve the many-body problem of interacting cold atoms with a Monte Carlo technique. Our results reproduce the observed excitation blockade effect. However, we demonstrate that an Autler-Townes double peak structure in the two-step excitation scheme, which occurs for moderate pulse lengths as used in the experiment, can give rise to an antiblockade effect. It is most pronounced for atoms arranged on a lattice. Since the effect is robust against a large number of lattice defects it should be experimentally realizable with an optical lattice created by CO2 lasers.  相似文献   

5.
In cold dense Rydberg atom samples, the dipole-dipole interaction strength is effectively resonant at the typical interatomic spacing in the sample, and the interaction has a 1/R3 dependence on interatomic spacing R. The dipole-dipole attraction leads to ionizing collisions of initially stationary atoms, which produces hot atoms and ions and initiates the evolution of initially cold samples of neutral Rydberg atoms into plasmas. More generally, the strong dipole-dipole forces lead to motion, which must be considered in proposed applications.  相似文献   

6.
We investigate a possible mechanism for the autoionization of ultracold Rydberg gases, based on the resonant coupling of Rydberg pair states to the ionization continuum. Unlike an atomic collision where the wave functions begin to overlap, the mechanism considered here involves only the long-range dipole interaction and is in principle possible in a static system. It is related to the process of intermolecular Coulombic decay (ICD). In addition, we include the interaction-induced motion of the atoms and the effect of multi-particle systems in this work. We find that the probability for this ionization mechanism can be increased in many-particle systems featuring attractive or repulsive van der Waals interactions. However, the rates for ionization through resonant dipole coupling are very low. It is thus unlikely that this process contributes to the autoionization of Rydberg gases in the form presented here, but it may still act as a trigger for secondary ionization processes. As our picture involves only binary interactions, it remains to be investigated if collective effects of an ensemble of atoms can significantly influence the ionization probability. Nevertheless our calculations may serve as a starting point for the investigation of more complex systems, such as the coupling of many pair states proposed in [P.J. Tanner et al., Phys. Rev. Lett. 100, 043002 (2008)].  相似文献   

7.
We have measured a p-wave Feshbach resonance in a single-component, ultracold Fermi gas of 40K atoms. We have used this resonance to enhance the normally suppressed p-wave collision cross section to values larger than the background s-wave cross section between 40K atoms in different spin states. In addition to the modification of two-body elastic processes, the resonance dramatically enhances three-body inelastic collisional loss.  相似文献   

8.
A new general expression is derived for the fluctuating electromagnetic field outside a metal surface in terms of its surface impedance. It provides a generalization to real metals of Lifshitz theory of molecular interactions between dielectric solids. The theory is used to compute the radiative heat transfer between two parallel metal surfaces at different temperatures. It is shown that a measurement of this quantity may provide an experimental resolution of a long-standing controversy about the effect of thermal corrections on the Casimir force between real metal plates.  相似文献   

9.
We present a dynamic van der Waals theory. It is useful to study phase separation when the temperature varies in space. We show that, if heat flow is applied to liquid suspending a gas droplet at zero gravity, a convective flow occurs such that the temperature gradient within the droplet nearly vanishes. As the heat flux is increased, the droplet becomes attached to the heated wall that is wetted by liquid in equilibrium. In one case corresponding to partial wetting by gas, an apparent contact angle can be defined. In the other case with larger heat flux, the droplet completely wets the heated wall expelling liquid.  相似文献   

10.
We study the formation of Rydberg atoms in expanding plasmas at temperatures of 1-1000 K and densities from 10(5)-10(10) cm(-3). Up to 20% of the initially free charges recombine in about 100 micros, and the binding energy of the Rydberg atoms approximately equals the increase in the kinetic energy of the remaining free electrons. Three-body recombination is expected to dominate in this regime, yet most of our results are inconsistent with this mechanism.  相似文献   

11.
12.
It is demonstrated that excited van der Waals systems can relax by electron emission via a novel interatomic mechanism. The process is analyzed by means of extensive ab initio calculations of potential energy surfaces and electronic decay rates. The electronic emission, taking place on the same time scale as the motion of the atomic nuclei, is accompanied by interesting dynamical effects amenable to experimental observations. These effects arise as a consequence of the weak chemical bond in van der Waals clusters and the Coulomb repulsion pattern originating from electron emission.  相似文献   

13.
14.
A pseudopotential model is suggested to describe the thermodynamics and correlation functions of an ultracold, strongly nonideal Rydberg plasma. The Monte Carlo method is used to determine the energy, pressure, and correlation functions in the ranges of temperatures T=0.1–10 K and densities n=10?2–1016 cm?3. For a weakly nonideal plasma, the results closely agree with the Debye asymptotic behavior. For a strongly nonideal plasma, many-particle clusters and a spatial order in the arrangement of plasma electrons and ions have been found to be formed.  相似文献   

15.
We investigate properties of ultralong-range polyatomic molecules formed with a Rb Rydberg atom and several ground-state atoms whose distance from the Rydberg atom is of the order of n2a0, where n is the principle quantum number of the Rydberg electron. In particular, we put emphasis on the splitting of the energy levels, and elucidate the nature of the splitting via the construction of symmetry-adapted orbitals.  相似文献   

16.
Processes of intramolecular vibrational redistribution and vibrational predissociation in 9-cyanoanthracene—Ar van der Waals complexes are investigated; their effect on the probabilities of nonradiative transitions is establsihed. Belarusian State University, 4, F. Skorina Ave., Minsk, 220050, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 184–191, March–April, 1998.  相似文献   

17.
We find that energy surfaces of more than two atoms or molecules interacting via transition dipole-dipole potentials generically possess conical intersections (CIs). Typically only few atoms participate strongly in such an intersection. For the fundamental case, a circular trimer, we show how the CI affects adiabatic excitation transport via electronic decoherence or geometric phase interference. These phenomena may be experimentally accessible if the trimer is realized by light alkali atoms in a ring trap, whose interactions are induced by off-resonant dressing with Rydberg states. Such a setup promises a direct probe of the full many-body density dynamics near a CI.  相似文献   

18.
The interatomic potentials in a system consisting of a halogen atom in the ground state and an inert gas atom are calculated by the effective pseudopotential method with a new form of the polarization interaction potential found by calculating the most important polarization diagrams of perturbation theory in the Thomas-Fermi approximation. The results of these calculations of the quasi-molecular terms of this van der Waals system refine available data; some are obtained for the first time. The available experimental and theoretical data are compared. Odessa Hydrometeorological Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 71–75, October, 1996.  相似文献   

19.
The interatomic potentials in a system of an excited Na or K atom and an inert gas atom are calculated on the basis of the effective pseudopotential method, using a new form of the polarization interaction potential obtained by calculating the most important polarization diagrams of perturbation theory in the Thomas-Fermi approximation. The results of a calculation, on its basis, of the intermolecular terms of this van der Waals system are given, refining the existing data; some of the results have been obtained for the first time. A comparison is made with the available experimental and theoretical data. Odessa Hydrometeorological Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 32–35, September, 1996.  相似文献   

20.
The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition pressures between the crystalline ice phases. An important consequence, likely to be of relevance to molecular crystals in general, is that transition pressures obtained from density-functional theory exchange-correlation functionals which neglect vdW forces are greatly overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号