首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the observation of a magnetic polarization of the O 2p states in YMn(2)O(5) through the use of soft x-ray resonant scattering at the oxygen K edge. Remarkably, we find that the temperature dependence of the integrated intensity of this signal closely follows the macroscopic electric polarization, and hence is proportional to the ferroelectric order parameter. This is in contrast with the temperature dependence observed at the Mn L(3) edge, which reflects the Mn magnetic order parameter. First-principles calculations provide a microscopic understanding of these results and show that a spin-dependent hybridization of O 2p and Mn 3d states results in a purely electronic contribution to the ferroelectric polarization, which can exist in the absence of lattice distortions.  相似文献   

2.
We have studied the magnetostructural phase diagram of multiferroic TbMn2O5 as a function of temperature and magnetic field by neutron diffraction. Dielectric and magnetic anomalies are found to be associated with steps in the magnetic propagation vector, including a rare example of a commensurate-incommensurate transition on cooling below 24 K, and in the structural parameters. The geometrically frustrated magnetic structure is stabilized by "canted antiferroelectric" displacements of the Mn3+ ions, an example of the magnetic Jahn-Teller effect. The Tb moments order ferromagnetically at low temperatures in an applied field, while the Mn magnetic structure is largely unchanged.  相似文献   

3.
We performed soft X-ray resonant scattering at the MnL 2,3- and OK edges of YMn2O5. While the resonant intensity at the Mn L 2,3 edges reflects the magnetic order parameter, the resonant scattering at the O K edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn2O5. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the O K edge.  相似文献   

4.
Comprehensive x-ray scattering studies, including resonant scattering at Mn L, Tb L, and M edges, were performed on single crystals of TbMn2O5 for crystallographic data to elucidate the nature of its commensurate and incommensurate phases. The scattering results provide direct evidence of symmetry lowering to the ferroelectric phase driven by magnetically induced lattice modulations and show the presence of multiple magnetic orders. The competing orders under spin-frustrated geometry are believed to cause discommensuration and result in the commensurate-to-incommensurate phase transition around 24 K. It is proposed that the low temperature incommensurate phase consists of commensurate domains separated by antiphase domain walls which change both signs of spontaneous polarizations and x-ray scattering amplitudes for forbidden reflections.  相似文献   

5.
We studied magnetic excitations in a low-temperature ferroelectric phase of the multiferroic YMn(2)O(5) using inelastic neutron scattering (INS). We identify low-energy magnon modes and establish a correspondence between the magnon peaks observed by INS and electromagnon peaks observed in optical absorption [A. B. Sushkov et al., Phys. Rev. Lett. 98, 027202 (2007).]. Furthermore, we explain the microscopic mechanism, which results in the lowest-energy electromagnon peak, by comparing the inelastic neutron spectral weight with the polarization in the commensurate ferroelectric phase.  相似文献   

6.
We employ neutron spherical polarimetry to determine the nature and population of the coexisting antiferromagnetic domains in multiferroic YMn2O5. By applying an electric field, we prove that reversing the electrical polarization results in the population inversion of two types of in-plane domains, related to each other by inversion. Our results are completely consistent with the exchange-striction mechanism of ferroelectricity, and support a unified model where cycloidal ordering is induced by coupling to the main magnetic order parameter.  相似文献   

7.
The ground state structural, electronic, and magnetic properties of multiferroic TbMn(2)O(5) are investigated via first-principles calculations. We show that the ferroelectricity in TbMn(2)O(5) is driven by the noncentrosymmetric magnetic ordering, without invoking the spin-orbit coupling and noncollinear spins. The intrinsic electric polarization in this compound is calculated to be 1187 nC cm(-2), an order of magnitude larger than previously thought.  相似文献   

8.
The commensurate and incommensurate magnetic structures of the magnetoelectric system YMn2O5, as determined from neutron diffraction, were found to be spin-density waves lacking a global center of symmetry. We propose a model, based on a simple magnetoelastic coupling to the lattice, which enables us to predict the polarization based entirely on the observed magnetic structure. Our data accurately reproduce the temperature dependence of the spontaneous polarization, particularly its sign reversal at the commensurate-incommensurate transition.  相似文献   

9.
Based on measurements of soft-x-ray magnetic scattering and symmetry considerations, we demonstrate that the magnetoelectric effect in TbMn2O5 arises from an internal field determined by S-->q--> x S-->-q--> with S-->q--> being the magnetization at modulation vector q-->, whereas the magnetoelastic effect in the exchange energy governs the response to external electric fields. Our results set fundamental symmetry constraints on the microscopic mechanism of multiferroicity in frustrated magnets.  相似文献   

10.
The electronic structure of multiferroic YMn2O5 material has been studied by use of the generalized gradient approximation (GGA). The results demonstrate that the oxygen 2p and manganese 3d orbitals are strongly hybridized. Considering the on-site Coulomb interaction U, we performed the GGA+U calculations for 0 < U ? 8 eV, and it is found that the increase of U could enlarge the band gap and, on the other hand, weaken the Mn-O hybridization. The experimental measurements of the electron energy-loss spectrometry (EELS) exhibit a rich variety of structural features in both O-K edge and Mn-L edges. A theoretical and experimental analysis on the O-K edge suggests that the on-site Coulomb interaction (U) in YMn2 O5 could be less than 4 eV. Certain electronic structural features of LaMn2O5 have been discussed in comparison with those of YMn2O5.  相似文献   

11.
Cao K  Guo GC  He L 《J Phys Condens Matter》2012,24(20):206001
We investigate the electromagnon in magnetoferroelectrics RMn(2)O(5) using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn(2)O(5). We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction q(x). Therefore, the electromagnon frequencies of TmMn(2)O(5) (q(x) ~ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (q(x) ~ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.  相似文献   

12.
The generic magnetic phase diagram of multiferroic RMn2O5 (with R=Y, Ho, Tb, Er, Tm), which allows different sequences of ordered magnetic structures for different R's and different control parameters, is described using order parameters which explicitly incorporate the magnetic symmetry. A phenomenological magnetoelectric coupling is used to explain why some of these magnetic phases are also ferroelectric. Several new experiments, which can test this theory, are proposed.  相似文献   

13.
The sequence of phase transitions in the thermal dissociation and hydrogen reduction of YMn2O5 compound in the temperature range of 973–1123 K at pressures of 103-10-16 Pa is determined by the static method on a vacuum circulation system with subsequent X-ray diffraction analysis of the quenched solid phases. A fragment of the isothermal cross section of the Y-Mn-O system phase diagram is constructed in composition-oxygen pressure coordinates at 1173 K.  相似文献   

14.
Magnetoelectric coupling in RMn2O5 (with R?=?non magnetic) multiferroics have been studied using the Monte Carlo simulation. The variation of magnetization and the polarization of RMn2O5 multiferroic have been determined. The system undergoes a magnetic transition at TN and a further reduction of the temperature leads to a ferroelectric transition at TC?<? TN depending on the coupling strength. Magnetic and ferroelectric hysteresis loops are obtained for several temperatures values. Variation of polarization with the external magnetic field of RMn2O5 has been given. Variation of polarization and magnetization with the electric field of RMn2O5 has been obtained.  相似文献   

15.
Based on measurements of soft x-ray magnetic diffraction under in situ applied electric field, we report on significant manipulation and exciting of commensurate magnetic order in multiferroic ErMn2O5. The induced magnetic scattering intensity arises at the commensurate magnetic Bragg position whereas the initial magnetic signal almost persists. We demonstrate the possibility to imprint a magnetic response function in ErMn2O5 by applying an electric field.  相似文献   

16.
In this work, we report on the structural, electronic, and ferroelectric properties of SmMn2O5 by using first-principles density functional theory plus on-site Coulomb interaction (DFT + U) calculations. A thorough analysis was preformed to reveal the competing characteristics of different high-temperature (T) phases and the polarization mechanism in the low-T multiferroic phase. We show that the structural characteristics of the high-T phases have a strong influence on the low-T multiferroicity. In addition to the spin-induced lattice distortion that reduces substantially the purely electronic ferroelectricity, the dominant polarization mechanism in low-T SmMn2O5 still originates from the electronic polarization. By performing mode decomposition of the Hellmann–Feynman forces and the lattice distortion induced by the q = (0.5, 0, 0) magnetic order, we find that the Raman-active Ag mode characterized by the Mn4+O6 octahedron distortion and synergistic displacement of Mn3+ and Sm ions is of primary importance, while the infrared (IR)-active B2u mode plays a secondary role. These findings provide a theoretical foundation for future studies concerning the enhanced magnetoelectric effects of SmMn2O5 due to its pure exchange–striction mechanism.  相似文献   

17.
We present single crystal neutron diffraction measurements on multiferroic LuFe(2)O(4). Magnetic reflections are observed below transitions at 240 and 175 K indicating that the magnetic interactions in LuFe(2)O(4) are three-dimensional in character. The magnetic structure is refined as a ferrimagnetic spin configuration below the 240 K transition. Below 175 K a significant broadening of the magnetic peaks is observed along with the buildup of a diffuse component to the magnetic scattering.  相似文献   

18.
We have measured the dielectric constant for NdMn_2O_5 in an external magnetic field to map out the magnetoelectric phase diagram. The phase diagram corresponds well with the previously reported data of neutron diffraction and magnetic susceptibility. Our main finding is the observation of a dielectric anomaly in the low temperature phase with a strong magnetoelectric effect, which is attributed to the independent Nd~(3+) ordering. Moreover, the absence of the dielectric anomaly in the paramagnetic phase is discussed, keeping in view the exchange interaction and its dependence on the rareearth R~(3+) ionic radius.  相似文献   

19.
The results of thermogravimetric, X-ray diffraction, and electrical studies of LiCu2O2 single crystals in the temperature range 300–1100 K are presented. A reversible first-order phase transition between the orthorhombic and tetragonal phases is found to occur in these single crystals at T = 993 K. A pronounced peak on a differential thermal analysis curve and jumps in the unit cell parameters and the electrical resistivity are detected at the phase-transition temperature. The data on the crystal structure of LiCu2O2 and the phase transition-induced change in the entropy determined in this work are used to conclude that the revealed phase transition is caused by the ordering-disordering of Li+ and Cu2+ cations in their structural positions.  相似文献   

20.
We report the observation of multiferroicity in a clinopyroxene NaFeGe(2)O(6) polycrystal from the investigation of its electrical and magnetic properties. Following the previously known first magnetic transition at T(N1) = 13 K, a second magnetic transition appears at T(N2) = 11.8 K in the temperature dependence of the magnetization. A ferroelectric polarization starts to develop clearly at T(N2) rather than T(N1) and its magnitude increases up to ~13 μC m(-2) at 5 K, supporting the idea that the ferroelectric state in NaFeGe(2)O(6) stems from a helical spin order stabilized below T(N2). When a magnetic field of 90 kOe is applied, the electric polarization decreases to 9 μC m(-2) and T(N2) slightly increases by 0.5 K. At intermediate magnetic fields, around 28 and 78 kOe, anomalies in the magnetoelectric current, magnetoelectric susceptibility, and field derivative of magnetization curves are found, indicating field-induced spin-state transitions. Based on these electrical and magnetic properties, we provide a detailed low temperature phase diagram up to 90 kOe, and discuss the nature of each phase of NaFeGe(2)O(6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号