首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent experiments with Bose–Einstein condensates (BEC) in traps and speckle potentials have explored the dynamical regime in which the evolving BEC clouds localize due to the influence of classical dynamics. The growth of their mean energy is effectively arrested. This is in contrast with the well-known localization phenomena that originate due to quantum interferences. We show that classically induced localization can also be obtained in a classically chaotic, non-interacting system. In this work, we study the classical and quantum dynamics of non-interacting particles in a double-barrier structure. This is essentially a non-KAM system and, depending on the parameters, can display chaotic dynamics inside the finite well between the barriers. However, for the same set of parameters, it can display nearly regular dynamics above the barriers. We exploit this combination of two qualitatively different classical dynamical features to obtain saturation of energy growth. In the semiclassical regime, this classical mechanism strongly influences the quantum behaviour of the system.  相似文献   

2.
We propose using a nonlinear phase-shift interferometric converter (NPSIC), a new device, for lumped compensation for nonlinearity in optical fibers. The NPSIC is a nonlinear analog of the Mach-Zehnder interferometer and provides a way to control the sign of the nonlinear phase shift. We investigate a potential use of the NPSIC for compensation for nonlinearity to develop a dispersion-managed system that is closer to an ideal linear system. More importantly, the NPSIC can be used to essentially improve single-channel capacity in the nonlinear regime.  相似文献   

3.
The traditional diffusion approach for calculation of the collision frequency function for coagulation of Brownian particles is critically analyzed and shown to be valid only in the particular case of coalescence of small particles with large ones and inapplicable to calculation of the coalescence rate for particles of comparable sizes. It is shown that coalescence of Brownian particles generally occurs in the kinetic regime (realized under condition of homogeneous spatial distribution of particles), however, the expression for the collision frequency function in the continuum mode of the kinetic regime formally coincides with the standard expression derived in the diffusion regime for the particular case of large and small particles. This explains the validity of the traditional form of the coagulation rate equation in a wide range of parameters, corresponding to the continuum mode. Transition from the continuum to the free molecular mode can be described by the interpolation expression derived within the new analytical approach with fitting parameters that can be specified numerically, avoiding semi-empirical approach of existing models.  相似文献   

4.
We investigate the overdamped Langevin motion for particles in a potential well that is asymptotically flat. When the potential well is deep as compared to the temperature, physical observables, like the mean square displacement, are essentially time-independent over a long time interval, the stagnation epoch. However, the standard Boltzmann-Gibbs (BG) distribution is non-normalizable, given that the usual partition function is divergent. For this regime, we have previously shown that a regularization of BG statistics allows for the prediction of the values of dynamical and thermodynamical observables in the non-normalizable quasi-equilibrium state. In this work, based on the eigenfunction expansion of the time-dependent solution of the associated Fokker–Planck equation with free boundary conditions, we obtain an approximate time-independent solution of the BG form, being valid for times that are long, but still short as compared to the exponentially large escape time. The escaped particles follow a general free-particle statistics, where the solution is an error function, which is shifted due to the initial struggle to overcome the potential well. With the eigenfunction solution of the Fokker–Planck equation in hand, we show the validity of the regularized BG statistics and how it perfectly describes the time-independent regime though the quasi-stationary state is non-normalizable.  相似文献   

5.
We study Rayleigh–Bénard convection in the high-Rayleigh-number regime and infinite-Prandtl-number limit, i.e., we consider a fluid in a container that is exposed to strong heating of the bottom and cooling of the top plate in the absence of inertia effects. While the dynamics in the bulk are characterized by a chaotic heat flow, close to the horizontal walls, the fluid is essentially motionless. We derive local bounds on the temperature field in the boundary layers and prove that the temperature profile is essentially linear. The results depend only logarithmically on the system parameters. An important tool in our analysis is a new Hardy-type estimate for the convecting velocity field, which yields control of the fluid motion in the layer. The bounds on the temperature field are derived via local maximal regularity estimates for convection-diffusion equations.  相似文献   

6.
We consider a multi-species generalization of the Asymmetric Simple Exclusion Process on an open chain, in which particles hop with their characteristic hopping rates and fast particles can overtake slow ones. The number of species is arbitrary and the hopping rates can be selected from a discrete or continuous distribution. We determine exactly the phase structure of this model and show how the phase diagram of the 1-species ASEP is modified. Depending on the distribution of hopping rates, the system can exist in a three-phase regime or a two-phase regime. In the three-phase regime the phase structure is almost the same as in the one species case, that is, there are the low density, the high density and the maximal current phases, while in the two-phase regime there is no high-density phase.  相似文献   

7.
In this paper we study tricritical wetting behaviour in three dimensions. In particular we concentrate on systems with short-ranged forces and apply linear functional renormalization group techniques to elucidate the effect of fluctuations upon tricriticality. In comparison with studies of critical wetting we identify an additional fluctuation regime which is relevant for values of the capillary parameter between 2/9 and 1/2. We demonstrate that this regime essentially provides a crossover from mean-field like behaviour, in which tricritical exponents are always distinct from their critical counterparts, from intermediate- and strong-fluctuation behaviour where the critical exponents for tricritical and critical wetting are found to always coincide. We conclude by discussing briefly the possible relevance of these results for experimental studies of wetting. Received 4 January 2001 and Received in final form 11 May 2001  相似文献   

8.
Numerical calculations of phonon dispersion curves and phonon damping in solid Argon are presented. Particular emphasis is given to the transition between the low-frequency hydrodynamic regime, where collective effects are dominant, and the high-frequency “zero sound” regime, where phonons propagate essentially as single particles. An important quantity in this context is the Peierls' collision operator which is treated through a single relaxation time approximation. The calculations are based on an MLJ (6.12)-potential, and the effects of non-linear dispersion and anisotropy are fully taken into account. This article contains also a summary of the underlying theoretical work which has been presented in more detail in earlier publications. Supported by the Swedish Council for Atomic Research.  相似文献   

9.
Kazuya Okada 《Molecular physics》2018,116(18):2300-2309
In the previous study, from the viewpoint of surface modification technology, we considered a quasi-2D suspension in thermodynamic equilibrium in order to investigate the characteristics of magnetic cubic particles on a material surface. The present study has been expanded to include 3D Monte Carlo simulations of a suspension of magnetic cubic particles in order to discuss a regime change in the structures of cubic particle aggregates. We attempt to elucidate the dependence of a regime change in the aggregate structures on a variety of factors. The main results obtained here are summarised as follows. If the magnetic interaction strength is sufficiently large, closely packed clusters are formed by repeat and expansion of a cluster unit composed of eight particles, which may be the most preferred configuration as it gives rise to a minimum energy. A regime change in the internal structure of aggregates appears in a narrow range with increasing magnetic interaction strength. As the applied magnetic field strength is increased, closely packed clusters collapse and are transformed into wall-like clusters that are formed along the magnetic field direction. An increase in the volumetric fraction of particles induces a regime change from thick chain-like clusters to the formation of wall-like clusters.  相似文献   

10.
We study the Brownian motion of an ensemble of single colloidal particles in a random square and a quasicrystalline potential when they start from non-equlibrium. For both potentials, Brownian dynamics simulations reveal a widespread subdiffusive regime before the diffusive long-time limit is reached in thermal equilibrium. We develop a random trap model based on a distribution for the depths of trapping sites that reproduces the results of the simulations in detail. Especially, it gives analytic formulas for the long-time diffusion constant and the relaxation time into the diffusive regime. Aside from detailed differences, our work demonstrates that quasicrystalline potentials can be used to mimic aspects of random potentials.  相似文献   

11.
We study many-body quantum dynamics of delta-interacting bosons confined in a one-dimensional ring. Main attention is paid to the transition from the mean-field to the Tonks-Girardeau regime using an approach developed in the theory of interacting particles. We analyze, both analytically and numerically, how the Shannon entropy of the wave function and the momentum distribution depend on time for weak and strong interactions. We show that the transition from regular (quasiperiodic) to irregular ("chaotic") dynamics coincides with the onset of the Tonks-Girardeau regime. In the latter regime, the momentum distribution of the system reveals a statistical relaxation to a steady state distribution. The transition can be observed experimentally by studying the interference fringes obtained after releasing the trap and letting the boson system expand ballistically.  相似文献   

12.
We augment the usual three-wave cold-fluid equations governing Raman backscatter (RBS) with a new kinetic thermal correction, proportional to an average of particle kinetic energy weighted by the ponderomotive phase. From closed-form analysis within a homogeneous kinetic three-wave model and ponderomotively averaged kinetic simulations in a more realistic pulsed case, the magnitude of these new contributions is shown to be a measure of the dynamical detuning between the pump laser, seed laser, and Langmuir wave. Saturation of RBS is analyzed, and the role of trapped particles illuminated. Simple estimates show that a small fraction of trapped particles (approximately 6%) can significantly suppress backscatter. We discuss the best operating regime of the Raman plasma amplifier to reduce these deleterious kinetic effects.  相似文献   

13.
We have experimentally studied the distribution of the spatial extent of modes and the crossover from essentially single-mode to distinctly multimode behavior inside a porous gallium phosphide random laser. This system serves as a paragon for random lasers due to its exemplary high index contrast. In the multimode regime, we observed mode competition. We have measured the distribution of spectral mode spacings in our emission spectra and found level repulsion that is well described by the Gaussian orthogonal ensemble of random-matrix theory.  相似文献   

14.
We demonstrate that superfluorescent scattering of light can occur when laser light is incident on a collection of dielectric Rayleigh particles suspended in a viscous medium. Using a linear stability analysis, an expression for the spatiotemporal evolution of the scattered (probe) field is derived. An approximate condition for the progression of the interaction into the nonlinear regime is deduced and it is shown that, in the nonlinear regime, the scattered field intensity shows the characteristic quadratic dependence on particle density expected from a superfluorescent or superradiant process, once the effects of pump depletion are accounted for.  相似文献   

15.
李双  冯笙琴 《中国物理 C》2012,36(2):136-141
A new geometrical scaling method with a gluon saturation rapidity limit is proposed to study the gluon saturation feature of the central rapidity region of relativistic nuclear collisions. The net-baryon number is essentially transported by valence quarks that probe the saturation regime in the target by multiple scattering. We take advantage of the gluon saturation model with geometric scaling of the rapidity limit to investigate net baryon distributions, nuclear stopping power and gluon saturation features in the SPS and RHIC energy regions. Predictions for net-baryon rapidity distributions, mean rapidity loss and gluon saturation feature in central Pb+Pb collisions at the LHC are made in this paper.  相似文献   

16.
A new approach is proposed to model the bulk movement of solids in rotary drums operating at low rotation speeds, in slumping and rolling regimes. The model yields an equation similar to Saeman's equation, but which is valid also for the slumping regime and active area in the rolling regime. The model was developed for constant depth using a control surface containing the steepest descent direction, so that any contribution from sliding particles to flow rate can be neglected. By considering an appropriate virtual kiln, the model is extended to the more general, variable depth situation.  相似文献   

17.
The presence of new sources of massive boosted particles associated with processes probing the electroweak scale is a logical possibility that forms a solid window towards physics beyond the standard model. Such objects when decaying into hadronic final states can easily blend with the cornucopia of jets interpolated from essentially massless fundamental QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF of boosted massive jets and measurement of jet shape observables.  相似文献   

18.
Several methods of prescribing initial data for gravitational and matter fields, which are intended to eliminate extraneous radiation that is not produced by the matter source, are analysed in a simple exactly soluble radiating model. The model consists of an harmonic oscillator coupled to a scalar field along future light cones of Minkowski space time. In particular we analyze the asymptotic regime of the oscillator and find it is characterized essentially by two distinct decay modes. They differ in the way they behave both in the limit of small coupling constant and in a certain Newtonian limit. As a criterion to select initial data for the field with no extra radiation, we require that these initial data sets should put the oscillator from the start into the asymptotic regime. The underlying hypothesis here is that initial transients result from excitation of the oscillator by incoming radiation. We then see that the requirement of a uniform Newtonian limit leads to unique data for the scalar field for each arbitrary data set for the oscillator. We further find that this unique data set indeed satisfies our criterion.  相似文献   

19.
We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号