首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in-plane penetration depth naturally follows from the doping driven 3D-2D crossover and the 2D quantum superconductor to insulator transition in the underdoped limit. Since lattice distortions are the primary consequence of isotope substitution, our analysis clearly reveals the strong involvement of lattice degrees of freedom in mediating superconductivity.  相似文献   

2.
The 3D XY model with random in-plane couplings is simulated to model the phase diagram of a disordered type II superconductor as a function of temperature T and randomness strength p for fixed applied magnetic field. As p increases to a critical p(c), the first order vortex lattice melting line turns parallel to the T axis, continuing down to low temperatures, rather than ending at a critical point. Above p(c) preliminary results suggest the absence of a phase coherent vortex glass.  相似文献   

3.
4.
We have revealed the phase diagram of Ca2-xSrxRuO4: the quasi-two-dimensional Mott transition system that connects the Mott insulator Ca2RuO4 with the spin-triplet superconductor Sr2RuO4. Adjacent to the metal/nonmetal transition at x approximately 0.2, we found an antiferromagnetically correlated metallic region where non-Fermi-liquid behavior in resistivity is observed. Besides this, the critical enhancement of susceptibility toward the region boundary at x(c) approximately 0.5 suggests the crossover of magnetic correlation to a nearly ferromagnetic state, which evolves into the spin-triplet superconductor Sr2RuO4.  相似文献   

5.
For a broad range of electron densities n and temperatures T, the in-plane magnetoconductivity of the two-dimensional system of electrons in silicon MOSFETs can be scaled onto a universal curve with a single parameter H(sigma)(n,T), where H(sigma) obeys the empirical relation H(sigma) = A(n) [Delta(n)(2)+T2](1/2). The characteristic energy k(B)Delta associated with the magnetic field dependence of the conductivity decreases with decreasing density, and extrapolates to 0 at a critical density n(0), signaling the approach to a zero-temperature quantum phase transition. We show that H(sigma) = AT for densities near n(0).  相似文献   

6.
We investigated the behavior of the spin-triplet superconductor Sr2RuO4 ( T(c) approximately 1.5 K) under the magnetic fields parallel to the quasi-two-dimensional plane. The upper critical field H(c2) exhibits a clear fourfold anisotropy of about 3% at 0.35 K. Furthermore, we detected an additional transition feature below H(c2) in both the ac susceptibility and the specific heat. These second-transition features as well as the pronounced in-plane H(c2) anisotropy disappear above 0.8 K or under intentional field misalignment of less than 1 degrees. Most of these characteristics are consistent with the predicted emergence of the second superconducting phase with a line-node gap.  相似文献   

7.
We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved SturmLiouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the metal/superconductor phase transition in the Ad S black hole background. Furthermore, near the critical point, we find that the phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical potential for all the excited states in both s-wave and p-wave insulator/superconductor models.  相似文献   

8.
We build holographic p-wave conductor(insulator)/superconductor models via the numerical method with a new form of Weyl coupling in five-dimensional Lifshitz gravity, and then investigate how the Weyl coupling parameter γ and the Lifshitz scaling parameter z affect the superconductor models.In the conductor/superconductor model, an increase in the Weyl correction(Lifshitz scaling)enhances(inhibits) the superconductor phase transition. Meanwhile, both the Weyl correction(when the Lifshitz parameter is large enough and fixed) and the Lifshitz scaling suppress the growth of the real part of the conductivity. The Weyl correction used here(CB~2) shows weaker effects on the critical value than the previous Weyl correction(CF~2). In the insulator/superconductor model, larger vaules of the Weyl parameter hinder the formation of condensate. However, in increase in the Lifshitz scaling enhances the appearance of condensate. In addition, the calculation suggests that a competitive relation may exist between the Weyl correction and the Lifshitz scaling.  相似文献   

9.
本文研究了一维公度势和非公度势调制下的p波超导量子线系统的拓扑相变.在公度势调制下,通过计算Z2拓扑不变量确定系统的相图,指出系统的拓扑相变强烈地依赖于调制参数α和相移δ.在非公度势调制下,以α=(√5-1)/2,δ=0为例,计算系统的低能激发谱、Z2拓扑不变量以及逆参与率等,发现p波配对强度△∈(0,0.33)时,系统存在拓扑非平庸超导相,拓扑平庸超导相和拓扑平庸局域相的转变.而当p波配对强度△>0.33时,系统存在拓扑非平庸超导相和拓扑平庸局域相的转变.  相似文献   

10.
We measured the temperature dependent resistivity, varrho(T), of the intercalated graphite superconductor CaC6 as a function of pressure up to 16 GPa. We found a large linear increase of critical temperature, Tc, from the ambient pressure value 11.5 K up to 15.1 K, the largest value for intercalated graphite, at 7.5 GPa. At approximately 8 GPa, a jump of varrho and a sudden drop of Tc down to approximately 5 K indicates the occurrence of a phase transition. Our data analysis suggests that a pressure-induced phonon softening related to an in-plane Ca phonon mode is responsible for the Tc increase and that higher pressures greater, similar8 GPa lead to a structural transition into a new phase with a low Tc less, similar3 K.  相似文献   

11.
Recently, a new phenomenological Hamiltonian has been proposed to describe the superconducting cuprates. This so-called Gossamer Hamiltonian is an apt model for a superconductor with strong on-site Coulomb repulsion between the electrons. It is shown that at half-filling the Gossamer superconductor with strong repulsion is unstable toward an antiferromagnetic insulator. The superconducting state undergoes a quantum phase transition to an antiferromagnetic insulator as one increases the on-site Coulomb repulsion. Near the transition the Gossamer superconductor becomes spectroscopically indistinguishable from the insulator.  相似文献   

12.
We have investigated the temperature dependence of the H parallel to c flux line lattice structural phase transition from square to hexagonal symmetry, in the tetragonal superconductor LuNi2B2C ( T(c) = 16.6 K). At temperatures below 10 K the transition onset field, H2(T), is only weakly temperature dependent. Above 10 K, H2(T) rises sharply, bending away from the upper critical field. This contradicts theoretical predictions of H2(T) merging with the upper critical field and suggests that just below the H(c2)(T) curve the flux line lattice might be hexagonal.  相似文献   

13.
The superconducting state can be influenced by injecting spin-polarized current in a controlled manner by properly tailoring the interfacial transmittivity between a ferromagnet (F) and a superconductor (S), resulting in a large magnetoresistance of over 1100% for a F/I/S/I/F multilayer system (I insulator). Because of the competition between ferromagnetism and superconductivity, the superconducting transition temperature (T(C)) in the spin-parallel configuration is shifted below that in the spin antiparallel configuration. The T(C) shift is attributed to ferromagnet-induced nonequilibrium spin carriers in the superconductors.  相似文献   

14.
We report on experiments with one-dimensional (1D) arrays of small-capacitance superconducting quantum interference devices (SQUIDs), where an external magnetic field can be used to tune in situ the Josephson coupling between neighboring superconducting electrodes. We have studied the superconductor–insulator transition in such arrays, and have also used these arrays to bias a single Josephson junction. In the later experiment, we have observed a clear Coulomb blockade of Cooper-pair tunnelling (CBCPT) in the single junction.  相似文献   

15.
The phase diagram and the single-domain uniform state for a uniaxial ferromagnetic film with the superconducting layers covering one or both sides of a ferromagnet are investigated. The superconductor is supposed to be a second-order one and the interaction between the magnetic sub-system and with the conductivity electrons in a superconductor is purely electromagnetic and the vortices in a superconductor are pinned. The critical thickness of the magnetic film for which the uniform state becomes absolutely stable is calculated when the external magnetic field is supposed to be in-plane of the film. It is shown that the critical thickness of the film from the magnetic material with the quality factor Q>1 monotonically decreases as the magnetic field increases in the range from zero value to the value of the transition field where the collinear phase transforms into the angular (canted) phase. Further the critical thickness increases with the increase of the field. The quasi-single-domain magnetic film states were considered when the film thickness was close to the critical one. It is shown that for a thin isolated magnetic film the domain period exponentially increases with the decrease of the film thickness. Such dependence, however for the film with double-side superconducting cover and close to the transition into the single domain state becomes logarithmic and for the film covered by superconductor only on the one side varies as the power series. The single-domain state existence and the asymptotic behaviour of the domain structure is explained by the features of the asymptotic behaviour of the domain walls within the system. As for isolated magnetic film and for a film with the superconductor cover layers the transition from the collinear phase to the inhomogeneous state is the second-order phase transition and the transition from the uniform angular phase to the inhomogeneous phase is the first-order transition.  相似文献   

16.
Mott insulator superconductor transition, via pressure and no external doping, is studied in orbitally nondegenerate spin-1 / 2 systems. It is presented as another resonating valence bond route to high T(c) superconductivity. We propose a "strong coupling" hypothesis that views long range Coulomb force driven first order Mott transition as a self-doping process that also preserves superexchange on the metal side. We present a two-species t-J model where conserved N0 doubly occupied (e(-)) sites and N0 empty sites (e(+)) hop in the background of N-2N(0) singly occupied (neutral) sites in a lattice of N sites. An equivalence to the regular t-J model is made. Some old and new systems are predicted to be candidates for pressure-induced high T(c) superconductivity.  相似文献   

17.
The Bogoliubov de Gennes equation is applied to the study ofcoherence effects in the ferromagnetic superconductor/insulator/normalmetal/insulator/ferromagnetic/superconductor (FS/I/N/I/FS) junction. We calculated the Josephson current in FS/I/N/I/FS as a function of exchange field in ferromagnetic superconductor, temperature, and normal metal thickness. It is found that the Josephson critical current in FS/I/N/I/FS exhibits oscillations as a function of the length of normal metal. The exchange field always suppresses the Josephson critical current Ip for a parallel configuration of the magnetic moments of two ferromagnetic superconductor (FS) electrodes. In the antiparallel configuration, the Josephson critical current IAp at the minimum values of oscillation increases with the exchange field for strong barrier strength and at low temperatures.  相似文献   

18.
In the quantum rotor model with random exchange interactions having a nonzero mean, three phases, a (i) phase (Bose) glass, (ii) superfluid, and (iii) Mott insulator, meet at a bicritical point. We demonstrate that proximity to the bicritical point and the coupling between the energy landscape and the dissipative degrees of freedom of the phase glass lead to a metallic state at T = 0. Consequently, the phase glass is unique in that it represents a concrete example of a metallic state that is mediated by disorder, even in 2D. We propose that the experimentally observed metallic phase which intervenes between the insulator and the superconductor in a wide range of thin films is in actuality a phase glass.  相似文献   

19.
李晓薇 《中国物理 B》2009,18(12):5491-5495
This paper applies the Bogoliubov--de Gennes equation and the Blonder--Tinkham--Klapwijk approach to study the oscillatory behaviour of differential conductance in a normal metal/insulator/metal/d-wave superconductor junction carrying a supercurrent Is. We find that (i) a three-humped structure appears at a nearly critical supercurrent Is and z ≈ 0.5 for the normal metal/insulator/metal/d_x2 + y2-wave superconductor junction; (ii) the zero-bias conductance peak splits into two peaks with sufficiently large applied current for the normal metal/insulator/metal/dxy-wave superconductor junction; (iii) the conductance spectrum exhibits oscillating behaviour with the bias voltage and the peaks of the resonances are suppressed by increasing supercurrent Is.  相似文献   

20.
A systematic study of the intergranular properties of (Bi,Pb)2Sr2Ca2Cu3Oy (Bi2223) polycrystalline samples has been done using the electrical resistivity and Ac susceptibility techniques. In this project, we have prepared a series of Bi2223 samples with different sintering temperature. The XRD results show that by increasing sintering temperature up to 865 °C the Bi2212 phase fraction decrease. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of weak links and consequently reduces the intergranular critical current densities. Analysis of the temperature dependence of the Ac susceptibility near the transition temperature (Tc) has been done employing Bean's Critical State Model. The observed variation of intergranular critical current densities (Jc) with temperature indicates that the weak links are changed from superconductor–normal metal–superconductor (SNS) for well-coupled sample to superconductor–insulator–superconductor (SIS) type of junctions for the sample with high Bi2212 phase fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号