首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We demonstrate laser beam propagation and low backscatter in laser produced hohlraum plasmas of ignition plasma length. At intensities I < 5 x 10(14) W cm(-2) greater than 80% of the energy in a blue (3 omega, 351 nm) laser is transmitted through a L=5-mm long, high-temperature (Te = 2.5 keV), high-density (ne = 5 x 10(20) cm(-3)) plasma. These experiments show that the backscatter scales exponentially with plasma length which is consistent with linear theory. The backscatter calculated by a new steady state 3D laser-plasma interaction code developed for large ignition plasmas is in good agreement with the measurements.  相似文献   

2.
Enhanced decay of the 31-yr isomer of (178)Hf induced by x-ray irradiation has been reported previously. Here we describe an attempt to reproduce this result with an intense "white" x-ray beam from the Advanced Photon Source. No induced decay was observed. The upper limits for the energy-integrated cross sections for such a process, over the range of energies of 20--60 keV x rays, are less than 2 x 10(-27) cm(2) keV, below the previously reported values by more than 5 orders of magnitude; at 8 keV the limit is 5 x 10(-26) cm(2) keV.  相似文献   

3.
We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.  相似文献   

4.
Using interferometry, we investigate the dynamics of interaction of a relativistically intense 4-TW, 400-fs laser pulse with a He gas jet. We observe a stable plasma channel 1 mm long and less than 30 microm in diameter, with a radial gradient of electron density approximately 5 x 10(22) cm(-4) and with an on-axis electron density approximately ten times less than its maximum value of 8 x 10(19) cm(-3). A high radial velocity of the surrounding gas ionization of approximately 3.8 x 10(8) cm/s has been observed after the channel formation, and it is attributed to the fast ions expelled from the laser channel and propagating radially outward. We developed a kinetic model which describes the plasma channel formation and the subsequent ambient gas excitation and ionization. Comparing the model predictions with the interferometric data, we reconstructed the axial profile of laser channel and on-axis laser intensity. The estimated maximum energy of accelerated ions is about 500 keV, and the total energy of the fast ions is 5% of the laser pulse energy.  相似文献   

5.
We report the generation of high-current-density (20 A/cm2) pulsed electron beams from high-voltage (48-100 kV) glow discharges using cathodes 7.5 cm in diameter. The pulse duration was determined by the energy of the pulse generator and varied between 0.2 ?s and several microseconds, depending on the discharge current. The largest electron beam current (900 A) was obtained with an oxidized aluminum cathode in a helium-oxygen atmosphere. An oxidized magnesium cathode produced similar results, and a molybdenum cathode operated at considerably lower currents. A small-diameter (<1 mm) well-collimated beam of energetic electrons of very high current density (>1 kA/cm2) was also observed to develop in the center of the discharge. Electrostatic probe measurements show that the negative glow plasma density and the electron beam current have a similar spatial distribution. Electron temperatures of 1-1.5 eV were measured at 7 cm from the cathode. The plasma density (8.5 · 1011 cm-3 at 450 A) was found to depend linearly on the discharge current. In discharges at high currents a denser and higher temperature plasma region was observed to develop at approximately 20 cm from the cathode. We have modeled the process of electron beam generation and predicted the energy distribution of the electron beam. More than 95 percent of the electron beam energy is calculated to be within 10 percent of that corresponding to the discharge voltage.  相似文献   

6.
An ultrarelativistic 28.5 GeV, 700-microm-long positron bunch is focused near the entrance of a 1.4-m-long plasma with a density n(e) between approximately equal to 10(13) and approximately equal to 5 x 10(14) cm(-3). Partial neutralization of the bunch space charge by the mobile plasma electrons results in a reduction in transverse size by a factor of approximately equal to 3 in the high emittance plane of the beam approximately equal to 1 m downstream from the plasma exit. As n(e) increases, the formation of a beam halo containing approximately 40% of the total charge is observed, indicating that the plasma focusing force is nonlinear. Numerical simulations confirm these observations. The bunch with an incoming transverse size ratio of approximately 3 and emittance ratio of approximately 5 suffers emittance growth and exits the plasma with approximately equal sizes and emittances.  相似文献   

7.
The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst)?counts/(day·100 ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9) cm(-2)?s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0?σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10) cm(-2)?s(-1) and Φ(CNO)<1.3×10(9) cm(-2)?s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.  相似文献   

8.
We describe experiments demonstrating the formation of a high current electron beam from a vacuum arc plasma. A preexisting vacuum arc ion source was used, with the extraction voltage reversed in polarity so as to form an electron beam rather than an ion beam; no other changes were required. The beam formed was of energy up to 33 keV, beam current up to 70 A, beam diameter about 10 cm, pulse width 500 μs, and energy density up to 25 J/cm2. This kind of source can be used for material surface modification  相似文献   

9.
The mass of 22Mg     
Mass measurements with a relative precision of better than 1.5 x 10(-8) were performed on 22Mg and its reaction partners 21Na and 22Na with the ISOLTRAP Penning trap mass spectrometer at CERN, yielding the mass excesses D(22Mg)=-399.92(27) keV, D(21Na)=-2184.71(21) keV, and D(22Na)=-5181.56(16) keV. The importance of these results is twofold. First, a comparative half-life (Ft value) has been obtained for the superallowed beta decay of 22Mg to further test the conserved-vector-current hypothesis. Second, the resonance energy for the 21Na proton capture reaction has been independently determined, allowing direct comparisons of observable gamma radiation in nova explosions with the yield expected from models.  相似文献   

10.
A plasma-wakefield accelerator has accelerated particles by over 2.7 GeV in a 10 cm long plasma module. A 28.5 GeV electron beam with 1.8 x 10(10) electrons is compressed to 20 microm longitudinally and focused to a transverse spot size of 10 microm at the entrance of a 10 cm long column of lithium vapor with density 2.8 x 10(17) atoms/cm3. The electron bunch fully ionizes the lithium vapor to create a plasma and then expels the plasma electrons. These electrons return one-half plasma period later driving a large amplitude plasma wake that in turn accelerates particles in the back of the bunch by more than 2.7 GeV.  相似文献   

11.
A new positron accumulation scheme compatible with ultrahigh vacuum conditions has been developed, which is realized by preparing a high density electron plasma as high as approximately 10(11) cm(-3) and an ion cloud as energy absorbers. The present accumulation rate normalized by the intensity of 22Na positron source is (3.6+/-0.3)x10(2)e(+)/s/mCi, which is more than one and a half orders of magnitude higher than other ultrahigh vacuum compatible schemes so far reported.  相似文献   

12.
The interaction of 100-fs Ti:sapphire laser pulses with thin foil targets was experimentally investigated at intensities exceeding 10(18) W/cm(2). High harmonics were observed in transmission through an overdense plasma in the direction of the incident beam. From the cutoff frequency of the harmonics an electron density of 1 x 10(24) cm(-3) is inferred, indicating a compression of the plasma by the ponderomotive force of the laser pulse.  相似文献   

13.
Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics.  相似文献   

14.
1.06μm波长的强激光束辐照Au材料制作的空腔靶,采用目前国内最先进的诊断设备。对腔内高温等离子体现象演变规律进行了实验观察,获得了反射激光、能量吸收、X光转换、亚千X光能谱及时空特性、辐射温度、超热电子等重要物理信息,并就实验结果作了必要的分析和讨论  相似文献   

15.
We present the result of our most recent search for T violation in 205Tl, which is interpreted in terms of an electric dipole moment of the electron d(e). We find d(e) = (6.9 +/- 7.4)x10(-28)e cm, which yields an upper limit /d(e)/ < or = 1.6x10(-27)e cm with 90% confidence. The present apparatus is a major upgrade of the atomic beam magnetic-resonance device used to set the previous limit on d(e).  相似文献   

16.
The transverse dynamics of a 28.5-GeV electron beam propagating in a 1.4 m long, (0-2)x10(14) cm(-3) plasma are studied experimentally in the underdense or blowout regime. The transverse component of the wake field excited by the short electron bunch focuses the bunch, which experiences multiple betatron oscillations as the plasma density is increased. The spot-size variations are observed using optical transition radiation and Cherenkov radiation. In this regime, the behavior of the spot size as a function of the plasma density is well described by a simple beam-envelope model. Dynamic changes of the beam envelope are observed by time resolving the Cherenkov light.  相似文献   

17.
Reciprocal space measurements of spin diffusion in a single crystal of calcium fluoride (CaF2) have been extended to dipolar ordered states. The experimental results for the component of the spin diffusion rate parallel to the external field are D(parallel)(D)=29+/-3x10(-12) cm(2)/s for the [001] direction and D(parallel)(D)=33+/-4x10(-12) cm(2)/s for the [111] direction. The measured diffusion rates for dipolar order are faster than those for Zeeman order and are considerably faster than predicted by simple theoretical models. It is suggested that constructive interference in the transport of the two-spin states is responsible for this enhancement. As expected, the anisotropy in the diffusion rates is observed to be significantly less for dipolar order compared to the Zeeman case.  相似文献   

18.
We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (E(el)=2 MeV, fluence 6 x 10(17) cm(-2)) ZnO samples. The Zn vacancies are identified at concentrations of [V(Zn)] approximately 2 x 10(15) cm(-3) in the as-grown material and [V(Zn)] approximately 2 x 10(16) cm(-3) in the irradiated ZnO. These concentrations are in very good agreement with the total acceptor density determined by temperature dependent Hall experiments. Thus, the Zn vacancies are dominant acceptors in both as-grown and irradiated ZnO.  相似文献   

19.
The Rayleigh-Taylor instability in its highly nonlinear, turbulent stage causes atomic-scale mixing of the shell material with the fuel in the compressed core of inertial-confinement fusion targets. The density of shell material mixed into the outer core of direct-drive plastic-shell spherical-target implosions on the 60-beam, OMEGA laser system is estimated to be 3.4(+/-1.2) g/cm(3) from time-resolved x-ray spectroscopy, charged-particle spectroscopy, and core x-ray images. The estimated fuel density, 3.6(+/-1) g/cm(3), accounts for only approximately 50% of the neutron-burn-averaged electron density, n(e)=2.2(+/-0.4)x10(24) cm(-3).  相似文献   

20.
Gas-phase emission spectra of the hitherto unknown free radical TeLi have been measured in the NIR range with a Fourier-transform spectrometer. The emissions were observed from a fast flow system in which tellurium vapor in argon carrier gas was passed through a microwave discharge and mixed with lithium vapor in an observation tube. Two systems of blue-degraded bands were measured at high spectral resolution in the ranges 8000-9000 and 5700-6700 cm(-1) and vibrational and rotational analyses were performed. In order to aid in the analysis of the experimental data, a series of relativistic configuration interaction calculations has been carried out to obtain potential curves for the low-lying states of TeLi and the isovalent TeH and also electric dipole transition moments connecting them. As in the TeH system, the ground state of TeLi is found to be X(2)Pi(i), but with a remarkably smaller spin-orbit splitting. The TeLi calculations indicate a strongly bound A(2)Sigma(+) state, while in TeH the analogous state is computed to lie significantly higher at approximately 32 000 cm(-1), and it is strongly predissociated. Based on the theoretical analysis, the observed TeLi band systems are assigned to the transitions A(2)Sigma(+)(A1/2)-->X(1)(2)Pi(3/2)(X(1)3/2) and A(2)Sigma(+)(A1/2)-->X(2)(2)Pi(1/2)(X(2)1/2). Analysis of the spectra has yielded the molecular constants (in cm(-1)) X(1)(2)Pi(3/2):omega(e)=457.49(3), omega(e)x(e)=2.482(9), B(0)=0.408908(8); X(2)(2)Pi(1/2): T(e)=2353.44(3), omega(e)=456.28(4), omega(e)x(e)=2.635(8), B(0)=0.414954(8), p(0)=1.00637(4); A(2)Sigma(+): T(e)=8574.64(2), omega(e)=437.81(3), omega(e)x(e)=2.581(8), B(0)=0.423903(8), p(0)=-0.19915(2), where the numbers in parentheses are the standard deviations of the parameters. Comparison of the isovalent TeLi and TeH systems emphasizes that the difference in bonding character (ionic in TeLi vs covalent in TeH) is responsible for qualitative differences in the electronic spectra of these two molecules. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号