首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topology and weights are closely related in weighted complex networks and this is reflected in their modular structure. We present a simple network model where the weights are generated dynamically and they shape the developing topology. By tuning a model parameter governing the importance of weights, the resulting networks undergo a gradual structural transition from a module-free topology to one with communities. The model also reproduces many features of large social networks, including the "weak links" property.  相似文献   

2.
Modeling cascading failures in congested complex networks   总被引:1,自引:0,他引:1  
Cascading failures occur commonly in congested complex networks, where it may be expressed as the process of generation, diffusion and dissipation of congestion. Different from betweeness centrality, we introduce congestion effects to determine the load on the node. In terms of user equilibrium condition, congestion effects can be described by cost functions or link performance functions, which map link flows to travel times. By introducing conceptual “practical capacity” dynamics to cost functions, cascading failures are well discussed in terms of the degree of congestion in complex networks. Moreover, the efficiency dynamics of the network due to cascading failures is also investigated, and a transition phenomenon is uncovered independent of clustering effect.  相似文献   

3.
Scaling, Optimality, and Landscape Evolution   总被引:6,自引:0,他引:6  
A nonlinear model is studied which describes the evolution of a landscape under the effects of erosion and regeneration by geologic uplift by mean of a simple differential equation. The equation, already in wide use among geomorphologists and in that context obtained phenomenologically, is here derived by reparametrization invariance arguments and exactly solved in dimension d=1. Results of numerical simulations in d=2 show that the model is able to reproduce the critical scaling characterizing landscapes associated with natural river basins. We show that configurations minimizing the rate of energy dissipation (optimal channel networks) are stationary solutions of the equation describing the landscape evolution. Numerical simulations show that a careful annealing of the equation in the presence of additive noise leads to configurations very close to the global minimum of the dissipated energy, characterized by mean field exponents. We further show that if one considers generalized river network configurations in which splitting of the flow (i.e., braiding) and loops are allowed, the minimization of the dissipated energy results in spanning loopless configurations, under the constraints imposed by the continuity equations. This is stated in the form of a general theorem applicable to generic networks, suggesting that other branching structures occurring in nature may possibly arise as optimal structures minimizing a cost function.  相似文献   

4.
As exemplified by power grids and large-scale brain networks, some functions of networks consisting of phase oscillators rely on not only frequency synchronization, but also phase synchronization among the oscillators. Nevertheless, even after the oscillators reach frequency-synchronized status, the phase synchronization is not always accomplished because the phase difference among the oscillators is often trapped at non-zero constant values. Such phase difference potentially results in inefficient transfer of power or information among the oscillators, and avoids proper and efficient functioning of the networks. In the present study, we newly define synchronization cost by using the phase difference among the frequency-synchronized oscillators, and investigate the optimal network structure with the minimum synchronization cost through rewiring-based optimization. By using the Kuramoto model, we demonstrate that the cost is minimized in a network with a rich-club topology, which comprises the densely-connected center nodes and low-degree peripheral nodes connecting with the center module. We also show that the network topology is characterized by its bimodal degree distribution, which is quantified by Wolfson’s polarization index.  相似文献   

5.
Passive Optical Networks(PONs)are considered as the preferred solution for broadband fibre-based access networks.This is because PONs present low cost deployment,low energy consumption and also meet high bandwidth demands from end users.In addition,end users expect a high availability for access networks,while operators are more concerned about reducing the failure impact(number of clients affected by failures).Moreover,operators are also interested in reducing the cost of the access network.This paper provides a deep insight into the consequences that the physical topology and design decisions cause on the availability,the failure impact and the cost of a PON.In order to do that,the physical layout of the PON deployment area is approximated by a network geometric model.A PON deployed according to the geometric model is then assessed in terms of failure impact,availability and cost.This way,the effects of different design decisions and the physical layout on these three parameters are evaluated.In addition,the tradeoffs between availability,failure impact and cost caused by planning decisions and the physical topology are identified and pinpointed.  相似文献   

6.
As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the connection of the networked system, the concept of dependence link is proposed to represent the dependence relationship of agents. These studies suggest that the percolation properties of these networks differ greatly from those of the ordinary networks. In particular,unlike the well known continuous transition on the ordinary networks, the percolation transitions on these networks are discontinuous. Moreover, these networks are more fragile for a broader degree distribution, which is opposite to the famous results for the ordinary networks. In this article, we give a summary of the theoretical approaches to study the percolation process on networks with inter- and inner-dependence links, and review the recent advances in this field, focusing on the topology and robustness of such networks.  相似文献   

7.
导热优化中的最小传递势容耗散与最小熵产   总被引:5,自引:1,他引:4  
为了比较分析强化传热中存在的熵产最小化和传递势容耗散最小化两种不同的方法,针对体点问题,根据这两种方法对导热系数分布进行了优化。数值计算和理论分析的结果表明,根据最小传递势容耗散原理得到的结果优于最小熵产原理得到的结果。其原因在于传递势容耗散最小的优化目标是提高热量传递效率,而熵产最小的优化目标实际上是减少可用能损失。  相似文献   

8.
Virtual topology of WDM optical networks is often designed for some specific traffic matrix to get the best network performance. When traffic demand imposed on WDM optical networks changes, the network performance may degrade and even become unacceptable. So virtual topology need to be reconfigured. In previous works, virtual topology is reconfigured to achieve the best network performance, in which a large number of lightpaths need to be set up or torn down. In this paper, we try to get a tradeoff between the network performance and traffic disruption (or implementing cost). The problem of virtual topology reconfiguration for changing traffic patterns is formulated as an optimization problem and a mixed integer linear programming (MILP) algorithm is presented. Numerical results show that a large cost reduction of reconfiguration can be achieved at the expense of network performance.  相似文献   

9.
Earthquake faults occur in interacting networks having emergent space-time modes of behavior not displayed by isolated faults. Using simulations of the major faults in southern California, we find that the physics depends on the elastic interactions among the faults defined by network topology, as well as on the nonlinear physics of stress dissipation arising from friction on the faults. Our results have broad applications to other leaky threshold systems such as integrate-and-fire neural networks.  相似文献   

10.
周海舰  王海  朱彤 《计算物理》2017,34(3):355-364
为了充分利用新能源的节能潜力,需要提高供热管网模型在非对称、非规则拓扑结构的管网上进行水力计算的能力.本文提出一种立体管网建模方法.该方法无需基于图论搜索基本回路,能够在三维非对称、非规则拓扑结构上直接对热网进行水力工况分析.将该方法与传统方法的建模过程进行详细的比较,并通过具体案例计算验证方法的有效性.  相似文献   

11.
In this paper networks that optimize a combined measure of local and global synchronizability are evolved. It is shown that for low coupling improvements in the local synchronizability dominate network evolution. This leads to an expressed grouping of elements with similar native frequency into cliques, allowing for an early onset of synchronization, but rendering full synchronization hard to achieve. In contrast, for large coupling the network evolution is governed by improvements towards full synchronization, preventing any expressed community structure. Such networks exhibit strong coupling between dissimilar oscillators. Albeit a rapid transition to full synchronization is achieved, the onset of synchronization is delayed in comparison to the first type of networks. The paper illustrates that an early onset of synchronization (which relates to clustering) and global synchronization are conflicting demands on network topology.  相似文献   

12.
由Internet构成的复杂网络的动力学特性主要受到用户需求行为的影响,具备时域的统计规律性. 通过对区域群体用户需求行为的时域实验统计分析,发现用户对Web网站的访问频度及其生成的二分网络的入度分布也呈现幂律分布和集聚现象,其幂指数介于1.7到1.8之间. 建立了虚拟资源网络VRN和物理拓扑网络PTN双层模型,分析了双层模型映射机理,并对网络用户需求行为进行建模. 虚拟资源网络VRN对物理拓扑网络PTN映射过程的不同机理,模拟了Internet资源网络到物理网络的不同影响模式. 幂律分布的用户需求特性会 关键词: 复杂网络 无标度拓扑 用户需求 相变  相似文献   

13.
A novel low-complexity framework for designing survivable optical mesh networks with undetermined topology is presented. By jointly optimizing the topology planning, working- and spare-capacity planning, a cost saving of over 40% can be achieved for a national-scale network with 31 nodes.  相似文献   

14.
Xiaojia Li  Yanqing Hu  Ying Fan 《Physica A》2010,389(1):164-170
Many networks are proved to have community structures. On the basis of the fact that the dynamics on networks are intensively affected by the related topology, in this paper the dynamics of excitable systems on networks and a corresponding approach for detecting communities are discussed. Dynamical networks are formed by interacting neurons; each neuron is described using the FHN model. For noisy disturbance and appropriate coupling strength, neurons may oscillate coherently and their behavior is tightly related to the community structure. Synchronization between nodes is measured in terms of a correlation coefficient based on long time series. The correlation coefficient matrix can be used to project network topology onto a vector space. Then by the K-means cluster method, the communities can be detected. Experiments demonstrate that our algorithm is effective at discovering community structure in artificial networks and real networks, especially for directed networks. The results also provide us with a deep understanding of the relationship of function and structure for dynamical networks.  相似文献   

15.
Entangled networks, synchronization, and optimal network topology   总被引:2,自引:0,他引:2  
A new family of graphs, entangled networks, with optimal properties in many respects, is introduced. By definition, their topology is such that it optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost optimal in many senses, and with plenty of potential applications in computer science or neuroscience.  相似文献   

16.
We study the influence of coupling strength and network topology on synchronization behavior in pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the completely synchronous state in such networks only depends on the number of signals each neuron receives, independent of all other details of the network topology. This is in contrast with linearly coupled bursting neurons where complete synchrony strongly depends on the network structure and number of cells. Through analysis and numerics, we show that the onset of synchrony in a network with any coupling topology admitting complete synchronization is ensured by one single condition.  相似文献   

17.
In weighted networks, redistribution of link weights can effectively change the properties of networks, even though the corresponding binary topology remains unchanged. In this paper, the effects of weight randomization on synchronization of coupled chaotic maps is investigated on regular weighted networks. The results reveal that synchronizability is enhanced by redistributing of link weights, i.e. coupled maps reach complete synchronization with lower cost. Furthermore, we show numerically that the heterogeneity of link weights could improve the complete synchronization on regular weighted networks.  相似文献   

18.
Dynamical weights and enhanced synchronization in adaptive complex networks   总被引:4,自引:0,他引:4  
Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks.  相似文献   

19.
Stability of synchronization in delay-coupled networks of identical units generally depends in a complicated way on the coupling topology. We show that for large coupling delays synchronizability relates in a simple way to the spectral properties of the network topology. The master stability function used to determine the stability of synchronous solutions has a universal structure in the limit of large delay: It is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. This allows a universal classification of networks with respect to their synchronization properties and solves the problem of complete synchronization in networks with strongly delayed coupling.  相似文献   

20.
A practical methodology based on a topology group concept is presented for finding optimal topologies of trusses. The trusses are subjected to natural frequency, stress, displacement and Euler buckling constraints. Multiple loading conditions are considered, and a constant nodal mass is assumed for each existing node. The nodal cost as well as the member cost is incorporated in the cost function. Starting with a ground structure, a sequence of substructures with different node distribution, called topology group, is generated by using the binary number combinatorial algorithm. Before optimizing a certain topology, its meaningfulness should be examined. If a topology is meaningless, it is then excluded; otherwise, it is optimized as a sectional area optimization problem. In order to avoid a singular solution, the dimension of the structure for a given topology is kept unchanged in the optimization process by giving the member to be removed a tiny sectional area. A parabolic interpolation method is used to solve a non-linear constrained problem, which forms the part of the algorithm. The efficiency of the proposed method is demonstrated by two typical examples of truss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号