首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The nonlinear ac stationary response of the magnetization of noninteracting uniaxial single-domain ferromagnetic particles acted on by superimposed dc and ac magnetic fields applied along the anisotropy axis is evaluated from the Fokker-Planck equation, expressed as an infinite hierarchy of recurrence equations for Fourier components of the relaxation functions governing longitudinal relaxation of the magnetization. The exact solution of this hierarchy comprises a matrix continued fraction, allowing one to evaluate the ac nonlinear response and reversal time of the magnetization. For weak ac fields, the results agree with perturbation theory. It is shown that the dc bias field changes substantially the magnetization dynamics leading to new nonlinear effects. In particular, it is demonstrated that for a nonzero bias field as the magnitude of the ac field increases the reversal time first increases and having attained its maximum at some critical value of the ac field, decreases exponentially.  相似文献   

2.
王少杰  邱励俭 《计算物理》1996,13(2):129-135
按分布函数的定义不同,描述高能带电粒子在等离子体中输运的-Planck方程有不同的形式。从数值计算的观点出发对两种不同形式的Fokker-Planck方程作了比较和评价,并指出Fokker-Planck碰撞项可解释为速度空间的对流扩散项。在此基础上用有限差分方法求解二维(速度一维,几何一维)含时Fokker-Planck方程,编制了计算程序CAPT,并将其应用于α粒子的输运研究。最后计算了典型的Tokamak D-T聚变堆参数下α粒子的损失,并给出了堆内α粒子的分布及损失α粒子的速度分布。  相似文献   

3.
A set of general kinetic classical equations is derived for the correlations between particles and/or fields in an ionized three component system. External electric and magnetic fields may exist as well as the induced fields. In the lowest order the reversible Vlasov equation and the equivalent one oscillator equation result. In the first-order a Fokker-Planck type equation is obtained for both the one-particle and one-oscillator distribution functions.  相似文献   

4.
The eigenvalues and eigenfunctions of the Fokker-Planck equation describing the extremely underdamped Brownian motion in a symmetric double-well potential are investigated. By transforming the Fokker-Planck equation to energy and position coordinates and by performing a suitable averaging over the position coordinate, a differential equation depending only on energy is derived. For finite temperatures this equation is solved by numerical integration, whereas in the weak-noise limit an analytic result for the lowest nonzero eigenvalue is obtained. Furthermore, by using a boundary-layer theory near the critical trajectory, the correction term to the zero-friction-limit result is found.  相似文献   

5.
Brownian motion of the particles with repulsive interaction is investigated. When the potential condition is satisfied, the eigenvalue problem of interaction Fokker-Planck equation under certain conditions can be transformed to that of a many-particle Schrödinger equation. Using the Green's function method, we obtain the effective single-variable Fokker-Planck equation in the low density limit. We find that the diffusion of coupled Brownian particles in quenched disorder media is also anomalous in 2D. The Mittag-Leffler relaxation of pancake vortices is investigated by fractional Fokker-Planck equation.  相似文献   

6.
Brillouin scattering was used to study the effect of high-power microwave fields on an array of permalloy particles and the results are compared with simulations. The simulations are of two types: one is based on a model in which each particle is treated as a single spin, the second model relies on generalized micromagnetic codes that include external driving fields and enable magnon–magnon coupling. Experimental results as well as simulations show clear, but sometimes different, evidence of non-linear behavior.  相似文献   

7.
The phenomenon of stochastic resonance (SR) driven by time-delayed feedback in a bistable system with colored noise is investigated. Combining the small time delay and unified colored noise approximation, the Fokker-Planck equation is obtained. The different effects of time delay and noise correlation time on stationary probability density and signal-to-noise ratio (SNR) are discussed respectively. It is found that time delay can markedly improve the output SNR. This method can be practically applied to many fields such as weak signal extraction, recovery and so on. Numerical simulations are presented and are in agreement with the approximate theoretical results.  相似文献   

8.
In this paper, the analytical solutions of Schr¨odinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential for Brownian motion is always used to obtain the solutions of Fokker–Planck equation known as the Klein–Kramers equation, which is suitable for separation and additive Hamiltonians. In essence, we could study the random motion of Brownian particles by solving Schr¨odinger equation. The analytical results obtained from the two different methods agree with each other well. The double well potential is affected by two parameters, which are analyzed and discussed in details with the aid of graphical illustrations. According to the final results, the shapes of the double well potential have significant influence on the probability density function.  相似文献   

9.
The paper studies nonlinear hydrodynamic fluctuations by the methods of nonequilibrium statistical mechanics. The generalized Fokker-Planck equation for the distribution function of coarse-grained densities of conserved quantities is derived from the Liouville equation and then is investigated by using the gradient expansions in the flux correlation matrix. We have obtained the functional-differential Fokker-Planck equation describing the nonlinear hydrodynamic fluctuations in spatially nonuniform systems to second order in gradients of coarse-grained fluctuating fields. An outline of the derivation of Fokker-Planck equations containing the Burnett terms is also given. The explicit coordinate representation for the hydrodynamic Fokker-Planck equation is discussed in the case of one-component simple fluid. The general scheme of a change of coarse-grained functional variables is developed for hydrodynamic Fokker-Planck equations. The corresponding transformation rules are found for “drift” terms, “diffusion coefficients” and thermodynamic forces. The dynamical equations and stationary conditions for averages of functions (functionals) of hydrodynamic fields are discussed by using the Fokker-Planck operators acting on such functions. The explicit form of these operators are found for various sets of fluctuating fields. As an application of the formalism the calculation of the stationary correlation functions is presented for a simple nonequilibrium steady state.  相似文献   

10.
11.
We elaborate on recent results on the transport of interacting particles for both single-species and binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we also briefly review motion control without any spatial asymmetric potential (i.e., no ratchet). Our results are obtained using an analytical approach based on a nonlinear Fokker-Planck equation as well as via numerical simulations. By increasing the particle density, the net dc ratchet current in our alternating (ac)-driven systems can either increase or decrease depending on the temperature, the drive amplitude, and the nature of the inter-particle interactions. This provides an effective control of particle motion by just changing the particle density. At low temperatures, attracting particles can condense at some potential minima, thus breaking the discrete translational symmetry of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either in a drop to zero or in a saturation of the net particle velocity at densities above the condensation density-the latter case producing a very efficient rectification mechanism. For binary mixtures we find three ways of controlling the particle motion of one (passive) B species by means of another (active) A species: (i) Dragging the target particles B by driving the auxiliary particles A, (ii) rectifying the motion of the B particles on the asymmetric potential created by the A-B interactions, and (iii) dynamically modifying (pulsating) this potential by controlling the motion of the A particles. This allows to easily control the magnitude and direction of the velocity of the target particles by changing either the frequency, phase and/or amplitude of the applied ac drive(s).  相似文献   

12.
A center-manifold-reduced Fokker-Planck equation is derived, starting from a time-reversible Liouville equation. The derivation is valid when there is a large separation of relaxation-time scales causing the phase-space contraction near a dynamic critical point. The paradox of breaking of time-reversal symmetry in the resulting Fokker-Planck equation at the onset of the center manifold is clarified.  相似文献   

13.
A. Rossani 《Physica A》2009,388(12):2354-2366
The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.  相似文献   

14.
The influence of fluctuations in the driving fields on an optical bistable multimode system inside a ring resonator with a second order nonlinear material is considered. Steady state solutions of the resulting Fokker-Planck equations are found for different approximations in which one or two of the modes can be eliminated adiabatically. The results of the stochastics are compared with the deterministic behaviour.  相似文献   

15.
16.
姚成贵  何志威  占萌 《中国物理 B》2013,22(3):30503-030503
High-frequency signals are pervasive in many science and engineering fields.In this work,the effect of high-frequency driving on general nonlinear systems is investigated,and an effective equation for slow motion is derived by extending the inertial approximation for the direct separation of fast and slow motions.Based on this theory,a high-frequency force can induce various phase transitions of a system by changing its amplitude and frequency.Numerical simulations on several nonlinear oscillator systems show a very good agreement with the theoretic results.These findings may shed light on our understanding of the dynamics of nonlinear systems subject to a periodic force.  相似文献   

17.
 包含束团辐射阻尼效应的Fokker-Planck方程是比较完备地描述粒子运动状态的束团分布方程。在Fokker-Planck方程的基础上采用微扰展开方法对纵向微波不稳定性的发生机制及过程进行了分析,并且根据计算结果,研究了辐射阻尼效应对纵向微波不稳定性的影响。在计算中包含了静态的势阱畸变效应。计算结果表明,包含辐射阻尼效应的纵向微波不稳定性阈值高于没有辐射阻尼效应的不稳定性阈值。  相似文献   

18.
This contribution presents a derivation of the steady-state distribution of velocities and distances of driven particles on a onedimensional periodic ring, using a Fokker-Planck formalism. We will compare two different situations: (i) symmetrical interaction forces fulfilling Newton’s law of “actio = reactio” and (ii) asymmetric, forwardly directed interactions as, for example in vehicular traffic. Surprisingly, the steady-state velocity and distance distributions for asymmetric interactions and driving terms agree with the equilibrium distributions of classical many-particle systems with symmetrical interactions, if the system is large enough. This analytical result is confirmed by computer simulations and establishes the possibility of approximating the steady state statistics in driven many-particle systems by Hamiltonian systems. Our finding is also useful to understand the various departure time distributions of queueing systems as a possible effect of interactions among the elements in the respective queue [Physica A 363, 62 (2006)].  相似文献   

19.
We study a model of Brownian particles which are pumped with energy by means of a non-linear friction function, for which different types are discussed. A suitable expression for a non-linear, velocity-dependent friction function is derived by considering an internal energy depot of the Brownian particles. In this case, the friction function describes the pumping of energy in the range of small velocities, while in the range of large velocities the known limit of dissipative friction is reached. In order to investigate the influence of additional energy supply, we discuss the velocity distribution function for different cases. Analytical solutions of the corresponding Fokker-Planck equation in 2d are presented and compared with computer simulations. Different to the case of passive Brownian motion, we find several new features of the dynamics, such as the formation of limit cycles in the four-dimensional phase-space, a large mean squared displacement which increases quadratically with the energy supply, or non-equilibrium velocity distributions with crater-like form. Further, we point to some generalizations and possible applications of the model. Received 24 November 1999  相似文献   

20.
In this paper, a unified expansion theory that can be simultaneously applied to both large and small correlation times developed by Gang HU is established and applied to the systems driven by multiplicative colored noise. The stationary intensity probabilities are calculated for colored gain-noise and colored-loss-noise models. Comparing with the predictions of the best Fokker-Planck equation and the unified colored-noise approximation for the stationary intensity probability of the two models, it is found that the results of the unified expansion theory are in better agreement with simulations and experimental results than those of the best Fokker-Planck equation approximation and the unified colored-noise approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号