首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present an analytically solvable model for the transport of long DNA through microfluidic arrays of posts. The motion is a repetitive three-part cycle: (i) collision with the post and extension of the arms; (ii) rope-over-pulley post disengagement; and (iii) a random period of uniform translation before the next collision. This cycle, inspired by geometration, is a nonseparable (Scher-Lax) continuous-time random walk on a lattice defined by the posts. Upon adopting a simple model for the transition probability density on the lattice, we analytically compute the mean DNA velocity and dispersivity in the long-time limit without any adjustable parameters. The results compare favorably with the limited amount of experimental data on separations in self-assembled arrays of magnetic beads. The Scher-Lax formalism provides a template for incorporating more sophisticated microscale models.  相似文献   

3.
We numerically investigate the trapping behaviors of aligning particles in two-dimensional(2 D) random obstacles system. Under the circumstances of the effective diffusion rate and the average velocity tend to zero, particles are in trapped state. In this paper, we examine how the system parameters affect the trapping behaviors. At the large self-propelled speed, the ability of nematic particles escape from trapping state is enhancing rapidly, in the meanwhile the polar and free particles are still in trapped state. For the small rotation diffusion coefficient, the polar particles circle around(like vortices)the obstacles and here particles are in trapped state. Interestingly, only the partial nematic particles are trapped in the confined direction and additional particles remain flowing. In the free case, the disorder particle–particle collisions impede the motion in each other's directions, leading the free particles to be trapped. At the large rotation diffusion coefficient,the ordered motion of aligning particles disappear, particles fill the sample evenly and are self-trapped around obstacles.As the particles approach the trapping density due to the crowding effect the particles become so dense that they impede each other's motion. With the increasing number of obstacles, the trajectories of particles are blocked by obstacles, which obstruct the movement of particles. It is worth noting that when the number of the obstacles are large enough, once the particles are trapped, the system is permanently absorbed into a trapped state.  相似文献   

4.
Transport of particles is commonly encountered in microfluidic channels that deal with solid-liquid two-phase flows in conjunction with particles and cells to focus, separate, sort, extract, and filter them. In particular, there is a resemblance between microscale flows and macroscale flows in the sense that the inertial migration of particles cannot be neglected. Thus, the objective of the present article is to review how studies on the transport of solid particles have evolved from classical fluid dynamics to up-to-date microfluidics in view of measurement techniques, flow characteristics, and applications.  相似文献   

5.
Turbulence produced in low temperature helium gas flowing over arrays of rectangular- and triangular-shaped blunt obstacles is investigated experimentally. The set-up allows both low fluctuation rates (down to 8%), and high microscale Reynolds numbers, (up to 1 150). The forced Kolmogorov equation is found to apply accurately. Similar to another flow configuration (counter rotating flow case [1]), the analysis of the flatness factor evolution with the Reynolds number reveals a transitional behavior around 650. Received 26 August 1999 and Received in final form 28 August 2000  相似文献   

6.
Geometrically mediated breakup of drops in microfluidic devices   总被引:2,自引:0,他引:2  
Microfluidic technology offers capabilities for the precise handling of small fluid volumes dispersed as droplets. To fully exploit this potential requires simultaneous generation of multiple size droplets. We demonstrate two methods for passively breaking larger drops into precisely controlled daughter drops using pressure-driven flow in simple microfluidic configurations: (i) a T junction and (ii) flow past isolated obstacles. We quantify conditions for breakup at a T junction and illustrate sequential breakup at T junctions for making small drops at high dispersed phase volume fractions.  相似文献   

7.
Hunt HC  Wilkinson JS 《Optics letters》2011,36(16):3067-3069
Low-cost, compact, automated optical microsystems for chemical analysis, such as microflow cytometers for identification of individual biological cells, require monolithically integrated microlenses for focusing in microfluidic channels, to enable high-resolution scattering and fluorescence measurements. The multimode interference device (MMI), which makes use of self-imaging in multimode waveguides, is shown to be a simple and effective alternative to the microlens for microflow cytometry. The MMIs have been designed, realized, and integrated with microfluidic channels in a silica-based glass waveguide material system. Focal spot sizes of 2.4 μm for MMIs have been measured at foci as far as 43.7 μm into the microfluidic channel.  相似文献   

8.
Enabling fluids to be manipulated on the micron-scale, microfluidic technologies have facilitated major advances in how we study cells. In this review, we highlight key developments in how flow in microfluidic devices is exploited to investigate the behavior of individual cells, from trapping and positioning single cells to probing cell deformability. Exploiting the properties of fluids and flow patterns in microchannels makes it possible to study large populations of single cells at micron-length scales with increased throughput and efficiency.  相似文献   

9.
We demonstrate the proof-of-principle of a new separation concept for micrometer-sized particles in a structured microfluidic device. Under the action of externally applied, periodic voltage-pulses two different species of like-charged polystyrene beads are observed to simultaneously migrate into opposite directions. Based on a theoretical model of the particle motion in the microdevice that shows good agreement with the experimental measurements, the underlying separation mechanism is identified and explained. Potential biophysical applications, such as cell sorting, are briefly addressed.  相似文献   

10.
The use of magnetic particles in microfluidic devices offers new possibilities and a new degree of freedom to sequential synthesis and preparative or analytical procedures in very small volumes. In contrast to most of the traditional approaches where the liquid phase is flushed or pumped along a solid phase, the transport of magnetic particles through a microfluidic channel has the advantage of reduced reagent consumption and simpler, smaller systems. By lining up different reservoirs along the transport direction, reactions with different agents can be accomplished. Here, we present a pump and valve-free microfluidic particle transport system. By creating a simple and very effective layout of soft magnetic structures, which concentrate an external homogeneous magnetic field, a passive, thus easy to operate structure was generated. Most importantly, this layout is based on a simple tube by which fluidic and magnetic parts are separated. The tube itself is disposable and can be replaced prior to vital reactions, thus helping reduce sample cross-contaminations without affecting the particle transport properties. The layout of the device was thoroughly examined by a computer simulation of the particle trajectories, and the results were confirmed by experiments on a micro-machined demonstrator, which revealed an effective transport speed of up to 5 mm/s in 30 mT magnetic fields. Thus, we present a microfluidic transport device that combines the advantages of magnetic particles in microfluidic systems with a simple single-use technology for, e.g., bioanalytical purposes.  相似文献   

11.
Persistent entanglement in arrays of interacting particles   总被引:18,自引:0,他引:18  
We study the entanglement properties of a class of N-qubit quantum states that are generated in arrays of qubits with an Ising-type interaction. These states contain a large amount of entanglement as given by their Schmidt measure. They also have a high persistency of entanglement which means that approximately N/2 qubits have to be measured to disentangle the state. These states can be regarded as an entanglement resource since one can generate a family of other multiparticle entangled states such as the generalized Greenberger-Horne-Zeilinger states of 相似文献   

12.
The impact of the convective fluid motion induced by the electric fields on the dielectrophoretic manipulation of particles is investigated theoretically and experimentally. By means of a simplified model a channel with a periodic array of microelectrodes we show that electroconvective flows induce the formation of traps for particles, providing a dynamical mechanism to control microparticles in such devices. We demonstrate experimentally the theoretically predicted dynamical phenomena.  相似文献   

13.
Ordered arrays of gold‐rich particles, with diameters ranging from 50 nm to 180 nm, have been formed on a silicon (100) surface through pre‐patterning by nanoindentation. Indentation and gold deposition of the sample is followed by thermal processing, causing the gold to become trapped at the indentation sites. We suggest that gold trapping is via an alloying process with the underlying Si substrate where the native oxide is structurally compromised by the indentation process. The final size for a given particle is directly dependent on the size of the indentation site. It has also been demonstrated that excess gold found on the surface outside of these indentation sites can be readily removed via simple mechanical abrasion without affecting the particles within the indent. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
This article presents a novel negative-dielectrophoresis based approach for switching of a focused stream of micro-sized particles, including cells, to desired locations inside a continuous flow microfluidic device. The first section, of the device, focuses the incoming stream of micro-sized particles while the second section switches this focused stream of micro-sized particles. The microfluidic device consists of a glass substrate and a PDMS layer. The microfluidic device is realized using standard microfabrication. Tests are carried out using blood cells to demonstrate the efficacy of the approach in switching a stream of micro-sized particles to multiple locations inside the microchannel.  相似文献   

16.
Lattice Boltzmann simulation of solid particles suspended in fluid   总被引:2,自引:0,他引:2  
The lattice Boltzmann method, an alternative approach to solving a fluid flow system, is used to analyze the dynamics of particles suspended in fluid. The interaction rule between the fluid and the suspended particles is developed for real suspensions where the particle boundaries are treated as no-slip impermeable surfaces. This method correctly and accurately determines the dynamics of single particles and multi-particles suspended in the fluid. With this method, computational time scales linearly with the number of suspensions,N, a significant advantage over other computational techniques which solve the continuum mechanics equations, where the computational time scales asN 3. Also, this method solves the full momentum equations, including the inertia terms, and therefore is not limited to low particle Reynolds number.  相似文献   

17.
Some experimental results in the case of anisotropic media are at variance with the Einstein-Stokes formula of Brownian motion and the Singwi-Sjölander model. The disagreement comes from the anchor effect. The concept of “pseudoparticle” is introduced in order to retain the Singwi-Sjölander formalism. Mössbauer spectroscopy can be used to estimate the thickness of the anchored liquid-crystalline molecular textures forming on the surface of Brownian particles.  相似文献   

18.
19.
A novel platform for microfluidic manipulation of magnetic particles is discussed. The particles are confined by an array of magnetic spin valves with bistable ferromagnetic “ON” and antiferromagnetic “OFF” net magnetization states. The switchable fringing fields near the spin-valve traps can be used to selectively confine or release particles for transport or sorting. Spin-valve traps may be potentially used as magnetic molecular tweezers or adapted to a low-power magnetic random access memory (MRAM) switching architecture for massively parallel particle sorting applications.  相似文献   

20.
A propagation of dipolar radiation in a finite length linear chain of identical dielectric spheres is investigated using the multisphere Mie scattering formalism (MSMS). A frequency pass band is shown to be formed near every Mie resonances inherent in the spheres. The manifestation of the pass band depends on the polarization of the travelling radiation. To prove this effect, a point dipole placed by the end of the chain is used as an external source of radiation. It is found that, if this dipole is directed parallel to the chain axis, the frequency pass bands exist if the refractive index of dielectric spheres is sufficiently large nr>1.9. For the dipole normal to the chain axis, the pass band can always be formed if the chain is sufficiently long. Such a distinction is due to different behavior of the far-field dipolar interaction between the spheres induced by the external source. The edges of the pass bands are defined by the guiding wave criterion based on the light-cone constraint. The criterion of creation of the pass bands correlate with condition of formation of high quality factor modes in these systems found in our previous papers. A comparison with the results available for infinite chains is made. In particular, we clarify the nature of braking down the band structure for small enough wavevectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号