首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In tunneling spectroscopy of superconductors the density of states close to the surface or the interface to an insulating tunneling barrier is probed. For d-wave superconductors the particle–hole coherence results in interesting new phenomena at surfaces such as the formation of bound surface states at the Fermi level by Andreev reflection due to a sign change of the order parameter field in different k -directions. The probing of these states represents a phase-sensitive experiment allowing the determination of the order parameter symmetry in superconductors. We summarize the present experimental status with respect to the study of high-temperature superconductors (HTS). We discuss theoretically predicted consequences of a dominating d-wave order parameter in the hole-doped HTS on their tunneling spectra as well as on the physics of high-temperature superconductor Josephson junctions. A comparison of the tunneling spectra obtained for hole- and electron-doped HTS leads to the conclusion that the former have a d-wave, whereas the latter most likely have an anisotropic s-wave order parameter. We also address some unsettled questions related to the presence of a state with broken time-reversal symmetry at surfaces and interfaces of d-wave HTS and discuss specific features of d-wave tunnel junctions that have been predicted theoretically but still not been confirmed in experiments.  相似文献   

2.
We propose a new picture for superconductivity in kappa-(BEDT-TTF)2X salts arguing that small- q electron-phonon scattering dominates the pairing. We reproduce the distinct X-shaped d-wave gap reported recently by magneto-optic measurements and we argue that the softness of the momentum structure of the gap and the near degeneracy of s- and d-wave gap states may be at the origin of the experimental controversy about the gap symmetry. We show that a magnetic field applied parallel to the planes may induce extended gapless regions on the Fermi surface accounting for the experimental signatures of a Fulde-Ferrel-Larkin-Ovchinikov state and it may induce gap symmetry transitions as well.  相似文献   

3.
Recent experiments have observed bulk superconductivity in doped topological insulators. Here we ask whether vortex Majorana zero modes, previously predicted to occur when s-wave superconductivity is induced on the surface of topological insulators, survive in these doped systems with metallic normal states. Assuming inversion symmetry, we find that they do but only below a critical doping. The critical doping is tied to a topological phase transition of the vortex line, at which it supports gapless excitations along its length. The critical point depends only on the vortex orientation and a suitably defined SU(2) Berry phase of the normal state Fermi surface. By calculating this phase for available band structures we determine that superconducting p-doped Bi(2)Te(3), among others, supports vortex end Majorana modes. Surprisingly, superconductors derived from topologically trivial band structures can support Majorana modes too.  相似文献   

4.
We study the possibility of coexistence in a two component fermionic system of a superfluid state with a metallic-like state with gapless excitations at a Fermi surface. We consider a two-component system with mixing (hybridization) between them and attractive interactions between only one type of quasi-particles. Besides a conventional BCS regime, we find for sufficiently strong interactions a superfluid state of Bose condensed pairs at zero temperature. We investigate whether these pairs can coexist with a metallic-like state characterized by gapless electronic excitations. The zero temperature phase diagram as a function of the strength of the attractive interaction and the mixing is obtained. For simplicity and to clarify the nature of the quantum phase diagram we consider the case of s-wave pairing.  相似文献   

5.
We measured the heat capacity C(p) and microwave surface impedance Z(s) in the vortex state of YNi2B2C. In contrast to conventional s-wave superconductors, C(p) shows a square root[H] dependence. This square root[H] dependence persists even after the introduction of the columnar defects which change the electronic structure of the vortex core regime and destroy the regular vortex lattice. On the other hand, flux flow resistivity is nearly proportional to H. These results indicate that the vortex state of YNi2B2C is fundamentally different from the conventional s-wave counterparts, in that the delocalized quasiparticle states around the vortex core are important, similar to d-wave superconductors.  相似文献   

6.
7.
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three \({t_{{2_g}}}\) orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the \({d_{{x^2} - {y^2}}}\) orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.  相似文献   

8.
Since the discovery of high-temperature superconductivity in 1986 by Bednorz and Müller, great efforts have been devoted to finding out how and why it works. From the d-wave symmetry of the order parameter, the importance of antiferromagnetic fluctuations, and the presence of a mysterious pseudogap phase close to the Mott state, one can conclude that high-Tc superconductors are clearly distinguishable from the well-understood BCS superconductors. The d-wave superconducting state can be understood through a Gutzwiller-type projected BCS wavefunction. In this review article, we revisit the Hubbard model at half-filling and focus on the emergence of exotic superconductivity with d-wave symmetry in the vicinity of the Mott state, starting from ladder systems and then studying the dimensional crossovers to higher dimensions. This allows to confirm that short-range antiferromagnetic fluctuations can mediate superconductivity with d-wave symmetry. Ladders are also nice prototype systems allowing to demonstrate the truncation of the Fermi surface and the emergence of a Resonating Valence Bond (RVB) state with preformed pairs in the vicinity of the Mott state. In two dimensions, a similar scenario emerges from renormalization group arguments. We also discuss theoretical predictions for the d-wave superconducting phase as well as the pseudogap phase, and address the crossover to the overdoped regime. Finally, cold atomic systems with tunable parameters also provide a complementary insight into this outstanding problem.  相似文献   

9.
Lee DH 《Physical review letters》2000,84(12):2694-2697
Starting from the d-wave resonating-valence-bond mean-field theory of Kotliar and Liu, we present a new, long-wavelength/low-energy exact, treatment of gauge fluctuations. The result is a theory of gapless fermion quasiparticles coupled to superconducting phase fluctuations. We will discuss the physical implications, and the similarity and differences to a theory of superconductors with phase fluctuations.  相似文献   

10.
We demonstrate that Majorana fermions exist in edges of systems and in a vortex core even for superconductors with nodal excitations such as the d-wave pairing state under a particular but realistic condition in the case with an antisymmetric spin-orbit interaction and a nonzero magnetic field below the upper critical field. We clarify that the Majorana fermion state is topologically protected in spite of the presence of bulk gapless nodal excitations, because of the existence of a nontrivial topological number. Our finding drastically enlarges target systems where we can explore the Majorana fermion state.  相似文献   

11.
One of the most puzzling aspects of the high Tc superconductors is the appearance of Fermi arcs in the normal state of the underdoped cuprate materials. These are loci of low energy excitations covering part of the Fermi surface that suddenly appear above Tc instead of the nodal quasiparticles. Based on a semiclassical theory, we argue that partial Fermi surfaces arise naturally in a d-wave superconductor that is destroyed by thermal phase fluctuations. Specifically, we show that the electron spectral function develops a square root singularity at low frequencies for wave vectors positioned on the bare Fermi surface. We predict a temperature dependence of the arc length that can partially account for the results of recent angle resolved photoemission experiments.  相似文献   

12.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

13.
14.
Assuming a phenomenological self-energy ImΣ(ω)|ω|β, (β=1), which becomes gapped below Tc, we derived a new gap equation. The new gap equation contains the effect of the kinetic energy gain upon developing a superconducting order parameter. However, this new kinetic energy gain mechanism works only for a repulsive pairing potential leading to a s-wave state. In this case, compared to the usual potential energy gain in the superconducting state as in the BCS gap equation, the kinetic energy gain is more effective to easily achieve a high critical temperature Tc, since it is naturally Fermi energy scale. In view of the experimental evidences of a d-wave pairing state in the hole-doped copper-oxide high-Tc superconductors, we discuss the implications of our results.  相似文献   

15.
Recently, a homogeneous superfluid state with a single gapless Fermi surface was predicted to be the ground state of an ultracold Fermi gas with spin population imbalance in the regime of molecular Bose-Einstein condensation. We study vortices in this novel state using a symmetry-based effective field theory, which captures the low-energy physics of gapless fermions and superfluid phase fluctuations. This theory is applicable to all spin-imbalanced ultracold Fermi gases in the superfluid regime, regardless of whether the original fermion-pairing interaction is weak or strong. We find a remarkable, unconventional form of the interaction between vortices. The presence of gapless fermions gives rise to a spatially oscillating potential, akin to the RKKY indirect-exchange interaction in non-magnetic metals. We compare the parameters of the effective theory to the experimentally measurable quantities and further discuss the conditions for the verification of the predicted new feature. Our study opens up an interesting question as to the nature of the vortex lattice resulting from the competition between the usual repulsive logarithmic (2D Coulomb) and predominantly attractive fermion-induced interactions.  相似文献   

16.
Mao L  Shi J  Niu Q  Zhang C 《Physical review letters》2011,106(15):157003
We show that a chiral (f+if)-wave superconducting pairing may be induced in the lowest heavy hole band of a hole-doped semiconductor thin film through proximity contact with an s-wave superconductor. The chirality of the pairing originates from the 3π Berry phase accumulated for a heavy hole moving along a close path on the Fermi surface. There exist three chiral gapless Majorana edge states, in consistence with the chiral (f+if)-wave pairing. We show the existence of zero-energy Majorana fermions in vortices in the semiconductor-superconductor heterostructure by solving the Bogoliubov-de Gennes equations numerically as well as analytically in the strong confinement limit.  相似文献   

17.
We propose a new state of matter in which the pairing interactions carve out a gap within the interior of a large Fermi ball, while the exterior surface remains gapless. This defines a system which contains both a superfluid and a normal Fermi liquid simultaneously, with both gapped and gapless quasiparticle excitations. The universality class of this state can be realized at weak coupling. We predict that a cold mixture of two species of fermionic atoms with different mass will exhibit this state. For electrons in appropriate solids, it would define a material that is simultaneously superconducting and metallic.  相似文献   

18.
The question of determining the underlying Fermi surface (FS) that is gapped by superconductivity (SC) is of central importance in strongly correlated systems, particularly in view of angle-resolved photoemission experiments. Here we explore various definitions of the FS in the superconducting state using the zero-energy Green's function, the excitation spectrum, and the momentum distribution. We examine (a) d-wave SC in high-Tc cuprates, and (b) the s-wave superfluid in the BCS-Bose-Einstein condensation (BEC) crossover. In each case we show that the various definitions agree, to a large extent, but all of them violate the Luttinger count and do not enclose the total electron density. We discuss the important role of chemical potential renormalization and incoherent spectral weight in this violation.  相似文献   

19.
We study the electronic structure of a strongly correlated d-wave superconducting state. Combining a renormalized mean field theory with direct calculation of matrix elements, we obtain explicit analytical results for the nodal Fermi velocity upsilon(F), the Fermi wave vector k(F), and the momentum distribution n(k) as a function of hole doping in a Gutzwiller projected d-wave superconductor. We calculate the energy dispersion E(k) and spectral weight of the Gutzwiller-Bogoliubov quasiparticles and find that the spectral weight associated with the quasiparticle excitation at the antinodal point shows a nonmonotonic behavior as a function of doping. Results are compared to angle resolved photoemission spectroscopy of the high-temperature superconductors.  相似文献   

20.
We show that the spin-liquid phase of the half-filled Hubbard model on the triangular lattice can be described by a pure spin model. This is based on a high-order strong coupling expansion (up to order 12) using perturbative continuous unitary transformations. The resulting spin model is consistent with a transition from three-sublattice long-range magnetic order to an insulating spin-liquid phase, and with a jump of the double occupancy at the transition. Exact diagonalizations of both models show that the effective spin model is quantitatively accurate well into the spin-liquid phase, and a comparison with the Gutzwiller projected Fermi sea suggests a gapless spectrum and a spinon Fermi surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号