首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shearing of a simple nonpolar film, right after the liquid-to-solid phase transition under nanometer confinement, is studied by using a liquid-vapor molecular dynamics simulation method. We find that, in contrast with the shear melting and recrystallization behavior of the solidlike phase during the stick-slip motion, interlayer slips within the film and wall slips at the wall-film interface are often observed. The ordered solidified film is well maintained during the slip. Through the time variations of the frictional force and potential energy change within the film, we find that both the friction dissipation during the slip and the potential energy decay after the slip in the solidified film take a fairly large portion of the total energy dissipation.  相似文献   

2.
A. Tordesillas 《哲学杂志》2013,93(32):4987-5016
Force chain buckling, leading to unjamming and shear banding, is examined quantitatively via a discrete element analysis of a two-dimensional, densely-packed, cohesionless granular assembly subject to quasistatic, boundary-driven biaxial compression. A range of properties associated with the confined buckling of force chains has been established, including: degree of buckling, buckling modes, spatial and strain evolution distributions, and relative contributions to non-affine deformation, dilatation and decrease in macroscopic shear strength and potential energy. Consecutive cycles of unjamming–jamming events, akin to slip–stick events arising in other granular systems, characterize the strain-softening regime and the shear band evolution. Peaks in the dissipation rate, kinetic energy and local non-affine strain are strongly correlated: the largest peaks coincide with each unjamming event that is evident in the concurrent drops in the macroscopic shear stress and potential energy. Unjamming nucleates from the buckling of a few force chains within a small region inside the band. A specific mode of force chain buckling, prevalent in and confined to the shear band, leads to above-average levels of local non-affine strain and release of potential energy during unjamming. Ongoing studies of this and other buckling modes from a structural stability standpoint serve as the basis for the formulation of internal variables and associated evolution laws, central to the development of thermomicromechanical constitutive theory for granular materials.  相似文献   

3.
Influence of velocity in nanoscale friction processes   总被引:3,自引:0,他引:3  
Force-microscopy images of boric acid crystals were obtained experimentally and simulated with the use of a two-dimensional mechanical model. An analysis of the stick and slip movement of the microscope tip shows that the energy-dissipation mechanism is strongly influenced by the non-linear dynamics of the sliding system. The contributions of stick and viscous forces on the energy dissipation (or friction forces) are studied as a function of the relative scanning velocity. At low relative velocities, the stick forces are shown to be responsible for the energy dissipation. This energy is velocity-dependent, due to the coupling between the two degrees of freedom of the sliding system. As the scanning velocity increases the stick forces are damped; the viscous force is then predominant in the energy-dissipation process. Received: 30 October 2001 / Accepted: 17 May 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +55-21/2295-9397, E-mail: prioli@vdg.fis.puc-rio.br  相似文献   

4.
Friction in contact interfaces of assembled structures is the prime source of nonlinearity and energy dissipation. Determination of the dissipated energy in an assembled structure requires accurate modeling of joint interfaces in stick, micro-slip and macro-slip states. The present paper proposes an analytical model to evaluate frictional energy loss in surface-to-surface contacts. The goal is to develop a continuous contact model capable of predicting the dynamics of friction interface and dissipation energy due to partial slips. To achieve this goal, the governing equations of a frictional contact interface are derived for two distinct contact states of stick and partial slip. A solution procedure to determine stick–slip transition under single-harmonic excitations is derived. The analytical model is verified using experimental vibration test responses performed on a free-frictionally supported beam under lateral loading. The theoretical and experimental responses are compared and the results show good agreements between the two sets of responses.  相似文献   

5.
Z. Song 《哲学杂志》2013,93(28):3215-3233
Oscillatory sliding contact between a rigid rough surface and an elastic–plastic half-space is examined in the context of numerical simulations. Stick-slip at asperity contacts is included in the analysis in the form of a modified Mindlin theory. Two friction force components are considered – adhesion (depending on the real area of contact, shear strength and interfacial adhesive strength) and plowing (accounting for the deformation resistance of the plastically deformed half-space). Multi-scale surface roughness is described by fractal geometry, whereas the interfacial adhesive strength is represented by a floating parameter that varies between zero (adhesionless surfaces) and one (perfectly adhered surfaces). The effects of surface roughness, apparent contact pressure, oscillation amplitude, elastic–plastic properties of the half-space and interfacial adhesion on contact deformation are interpreted in the light of numerical results of the energy dissipation, maximum tangential (friction) force and slip index. A non-monotonic trend of the energy dissipation and maximum tangential force is observed with increasing surface roughness, which is explained in terms of the evolution of the elastic and plastic fractions of truncated asperity contact areas. The decrease of energy dissipation with increasing apparent contact pressure is attributed to the increase of the elastic contact area fraction and the decrease of the slip index. For a half-space with fixed yield strength, a lower elastic modulus produces a higher tangential force, whereas a higher elastic modulus yields a higher slip index. These two competing effects lead to a non-monotonic dependence of the energy dissipation on the elastic modulus-to-yield strength ratio of the half-space. The effect of interfacial adhesion on the oscillatory contact behaviour is more pronounced for smoother surfaces because the majority of asperity contacts deform elastically and adhesion is the dominant friction mechanism. For rough surfaces, higher interfacial adhesion yields less energy dissipation because more asperity contacts exhibit partial slip.  相似文献   

6.
Nanometer-scale friction measurements on a Au(111) surface have been performed at temperatures between 30 and 300?K by means of atomic force microscopy. Stable stick slip with atomic periodicity is observed at all temperatures, showing only weak dependence on temperature between 300 and 170?K. Below 170?K, friction increases with time and a distortion of the stick-slip characteristic is observed. Low friction and periodic stick slip can be reestablished by pulling the tip out of contact and subsequently restoring the contact. A comparison with molecular dynamics simulations indicates that plastic deformation within a growing gold junction leads to the observed frictional behavior at low temperatures. The regular stick slip with atomic periodicity observed at room temperature is the result of a dynamic equilibrium shape of the contact, as microscopic wear damage is observed to heal in the sliding contact.  相似文献   

7.
Computer simulation technique is used for studying the plastic flow at the tip of an arrested crack in lithium fluoride crystals. Two stages of the dislocation structure formation at the tip of a crack are analyzed: the formation of slip lines at the instant of crack arresting, and their evolution after sample unloading and partial healing of the crack. The size and the number of dislocations in a slip line are determined as functions of the loading force at the instant of crack arresting and on frictional stresses. It is shown that, during sample unloading and healing, some dislocations emerge at the plane of the crack under the action of mutual repulsion and image forces, so that the dislocation density attains its maximum value at a distance from the crack tip. A finite region free of dislocations exists in the immediate vicinity of the crack tip.  相似文献   

8.
丁凌云  龚中良  黄平 《物理学报》2009,58(12):8522-8528
以界面摩擦为研究对象,分析了黏滑过程中的能量积累和耗散问题.基于晶格热动力学理论,通过分析界面原子在周期性势场中跳跃前后的势能差,推导了界面原子温升公式.理论表明,界面温升与摩擦系统的接触状态和材料特性有关,界面交互势能是其中影响较大的因素之一.在滑动阶段初期,由于界面原子处于非热平衡状态,晶格的热振动将通过激发出新声子而耗散能量,从而使得非热平衡向平衡状态转变.通过引入量子力学和热力学理论,分析了界面摩擦能量的耗散规律.结果表明,当声子振动频率较大时,黏着阶段存储于界面振子上的弹性势能在滑动阶段就很快完全耗散,耗散时间远小于滑动阶段的时间. 关键词: 界面摩擦 黏滑 声子 温升  相似文献   

9.
Thermal convection is observed in molecular dynamic simulations of a fluidized granular system of nearly elastic hard disks moving under gravity, inside a square box. Boundaries introduce no shearing or time dependence, but the energy injection comes from a slip (shear-free) thermalizing base. The top wall is perfectly elastic and lateral boundaries are either elastic or periodic. The spontaneous temperature gradient appearing in the system due to the inelastic collisions, combined with gravity, produces a buoyancy force that, when dissipation is large enough, triggers convection.  相似文献   

10.
纳米通道滑移流动的分子动力学模拟研究   总被引:2,自引:0,他引:2  
本文采用非平衡分子动力学方法对平板纳米通道滑移流动进行了非平衡分子动力学模拟,获得了不同壁面势能和不同温度时流体的速度分布及密度分布。研究结果表明滑移速度在很大程度上决定于流体温度和壁面吸引力作用强度的大小。由于不同壁面吸引力时流体的密度分布受温度的影响规律不同,使得不同壁面吸引力时流体的滑移速度受温度影响规律也不一致。而且,流体结构受壁面流速的影响要受到壁面势能的制约。  相似文献   

11.
Choe H  Hong MH  Seo Y  Lee K  Kim G  Cho Y  Ihm J  Jhe W 《Physical review letters》2005,95(18):187801
Nanometer-sized columns of condensed water molecules are formed by an atomic-resolution force microscope operated in ambient conditions. An unusual stepwise decrease of the force gradient associated with the ultrathin water bridge in the tip-substrate gap is observed during its stretch, exhibiting regularity in step heights (approximately 0.5 N/m) and plateau lengths (approximately 1 nm). Such "quantized" elasticity is indicative of an atomic-scale stick slip at the tip-water interface. A thermodynamic-instability-induced rupture of the water meniscus (5 nm long and 2.6 nm wide) is also found. This work opens a high-resolution study of the structure and interface dynamics of a nanometric aqueous column.  相似文献   

12.
In this paper we examine the use of dynamic friction within a bolted structure to improve damping properties of the structure. The structure considered for this paper consists of two steel beam-columns bolted together allowing dynamic friction to occur at the interface. This paper presents an analysis of the behaviour of the structure and the effect of friction on its dynamics. It also presents an analysis of the energy dissipation in the structure by means of friction and the optimization of the bolt tension in order to dissipate the maximum vibration energy. We define analytical expressions for the vibration behaviour before and after slip occurs as well as the condition at which the slip-stick transition occurs. An experiment, in which the measurements of the bolt tension, the slip within the structure and the bending velocity are made, is used to validate the model. The theoretical analysis gave very close agreement with the experimental results and the effective damping of the structure was increased by a factor of approximately 10 through the use of dynamic friction.  相似文献   

13.
Techniques have been developed that facilitate the measurement and imaging of the charge exchanged between metal-insulator surfaces in relative motion. In the regime where the forces of friction lead to stick-slip motion, we find that the charge transfer accompanying the slip events is proportional to the force jumps and is bunched at the stick locations. The constant of proportionality is measured in electron volts per angstrom and has a small variance over a large range of slip sizes, suggesting that in these experiments macroscopic friction originates from and scales to the intrinsic electronic interactions that form between metal and insulator surfaces.  相似文献   

14.
Measurements of the velocity profile of water flowing on a glass surface using fluorescent nanoparticles and single fluorescent molecules as velocity probes show that the no slip boundary condition holds down to at least 10 nm from the surface. For water flowing on a hydrophobic solid surface, silanized glass, the no slip boundary condition fails, and a slip length of 45 nm is measured. These velocity measurements are complemented with atomic force microscopy measurements of dissipation on a small sphere oscillating near the surface with results in agreement with the velocity profiles.  相似文献   

15.
The interaction of charges with matter is described by a phenomenological, linear theory of polarization. For a moving point charge in an infinite medium it is shown that a local, frequency-dependent dielectric function leads to infinite frictional forces. The image force is calculated for a charge moving outside a half-space with local frequency-dependent dielectric function. The integral over the image force converges and depends on the velocity of the particle. The maximum energy of photo-electrons does not, therefore, depend linearly on the photon frequency. The photoelectric effect and its inverse are not time reversed processes, since dissipation occurs.  相似文献   

16.
We discuss crack propagation along the interface between two dissimilar materials. The crack edge separates two states of the interface, “stick” and “slip.” In the slip region, we assume that the shear stress is proportional to the sliding velocity; i.e., the linear viscous friction law is valid. In this picture, the static friction appears as the tile Griffith threshold for crack propagation. We calculate the crack velocity as a function of the applied shear stress and find that the main dissipation comes from the macroscopic region and is mainly due to the friction at the interface. The relevance of our results to recent experiments, Baumberger et al., Phys. Rev. Lett. 88, 075509 (2002), is discussed.  相似文献   

17.
张程宾  许兆林  陈永平 《物理学报》2014,63(21):214706-214706
为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低. 关键词: 速度滑移 温度阶跃 流固界面 粗糙度  相似文献   

18.
On the boundary slip of fluid flow   总被引:5,自引:1,他引:4  
For hundreds of years, in all the textbooks of classical fluid mechanics and lubrica- tion mechanics it is assumed that there was no wall slip (boundary slip) at a liquid-solid interface, i.e. no relative motion between liquid and solid at the interface. This is the no-slip boundary condition. It has been widely applied to engineering and experiments and to almost all the rheology or viscosity measurements of fluids. Rheology is one of the most important bases for fluid mechanics and lubricati…  相似文献   

19.
Curve squeal is commonly attributed to self-excited vibrations of the railway wheel, which arise due to a large lateral creepage of the wheel tyre on the top of the rail during curving. The phenomenon involves stick/slip oscillations in the wheel/rail contact and is therefore strongly dependent on the prevailing friction conditions. The mechanism causing the instability is, however, still a subject of controversial discussion. Most authors introduce the negative slope of the friction characteristic as a source of the instability, while others have found that squeal can also occur in the case of constant friction due to the coupling between normal and tangential dynamics. As a contribution to this discussion, a detailed model for high-frequency wheel/rail interaction during curving is presented in this paper and evaluated in the case of constant friction. The interaction model is formulated in the time domain and includes the coupling between normal and tangential directions. Track and wheel are described as linear systems using pre-calculated impulse response functions that are derived from detailed finite element models. The nonlinear, non-steady state contact model is based on an influence function method for the elastic half-space. Real measured wheel and rail profiles are used. Numerical results from the interaction model confirm that stick/slip oscillations occur also in the case of constant friction. The choice of the lateral creepage, the value of the friction coefficient and the lateral contact position on the wheel tread are seen to have a strong influence on the occurrence and amplitude of the stick/slip oscillations. The results from the interaction model are in good qualitative agreement with previously published findings on curve squeal.  相似文献   

20.
Atomistic simulations considering larger tip structures than hitherto assumed reveal novel dissipation mechanisms in noncontact atomic force microscopy. The potential energy surfaces of realistic silicon tips exhibit many energetically close local minima that correspond to different structures. Most of them easily deform, thus causing dissipation arising from hysteresis in force versus distance characteristics. Furthermore, saddle points which connect local minima can suddenly switch to connect different minima. Configurations driven into metastability by the tip motion can thus suddenly access lower energy structures when thermal activation becomes allowed within the time required to detect the resulting average dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号