首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One important application area of chalcogenide materials is rewritable optical data storage. This technology is based on a reversible phase transition between the crystalline and the amorphous state and vice versa. Currently dominant materials for rewritable optical recording are Ge–Sb–Te and Ag–In–Sb–Te alloys. Material research still continues due to the need for increasing storage capacity and data rates. Polycrystalline bulks of AgSbS2 were prepared by melt-quench technique. Composition and homogeneity of these bulks were checked by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), crystallinity was studied by X-ray diffraction (XRD). Targets for RF magnetron sputtering were prepared from pulverized bulks by hot-pressing technique. Targets were characterized the same way as bulks. Thin Ag–Sb–S films were prepared by RF magnetron sputtering as potential candidates for rewritable optical data storage films. Composition and homogeneity of prepared thin films were characterized by SEM-EDX, Rutherford Back Scattering (RBS) and Elastic Recoil Detection Analysis (ERDA); character (amorphous/crystalline) was traced by XRD. Optical properties (spectral dependence of refractive index) were evaluated on the basis of UV–Vis–NIR spectroscopy and variable angle spectral ellipsometry (VASE). Crystallization abilities were studied by the measurement of thermal dependence of the prepared thin films optical transmission.  相似文献   

2.
硼酸锂系列晶体的高压拉曼散射研究   总被引:1,自引:1,他引:0  
本文进行了硼酸锂系列晶体的高压拉曼散射及其压致相变的研究。对于三硼酸锂(LiB3O5),我们发现在5.0GPa有一可逆的晶态到晶态的相变,在27.0GPa有一不可逆的晶态到非晶态的相变。二硼酸锂(Li2B4O7)不可逆压致非晶相变发生在32.0GPa附近。对于一硼酸锂,我们研究了0—55.8GPa范围内的高压拉曼光谱,只在2.0GPa发现了一个晶态到晶态的相变,但未发现不可逆压致非晶化现象。在硼酸锂系列晶体中,不可逆压致非晶化的压力随Li2O的含量的增加而升高。硼酸锂晶体中Li2O的含量越高,压致非晶化越不容易发生,这与熔体急冷法制备硼酸锂玻璃的规律是一致的。  相似文献   

3.
A new class of superlattice, crystalline amorphous superlattice (CASL), by alternatively depositing two semiconductor materials, is proposed. CASL displays three states depending on the component materials' phase: both polycrystalline phases, both amorphous phases, and one polycrystalline phase while another amorphous phase. Using materials capable of reversible phase transition, CASL can demonstrate reversibility among three states. GeTe/Sb(2)Te(3) CASL has been synthesized and proved by x-ray reflectometry and TEM results. The reversible transition among three states induced by electrical and laser pulse was observed. The changes in the optical absorption edge, electrical resistivity, thermal conductivity, and crystallization temperature as a function of layer thickness are interpreted as quantum or nanoeffects. The unique properties of CASL enable the design of materials with specific properties.  相似文献   

4.
The chemical states of GeTe thin film are investigated using high-resolution X-ray photoelectron spectroscopy (HRXPS) with synchrotron radiation, during amorphous to crystalline structural phase transition. As the temperature increases from 250 to 400 °C, we observe the rock-salt crystalline structure and phase with X-ray diffraction (XRD) and transmission electron microscopy (TEM). Spin-orbit splitting of the Ge 3d core-level spectrum clearly appears after annealing at 400 °C for 5 min. However, the binding energy of the Ge 3d5/2 core-level peak of 29.8 eV does not change in the amorphous to crystalline structural phase transition. In the case of the Te 4d core-level, change in binding energy and peak shapes is also negligible. We assume that the Te atom is fixed at a site between the amorphous and crystalline phases. Although the structural environment of the Ge atoms changes during the structural phase transition, the chemical environment does not.  相似文献   

5.
Polarization rotation and vector field steering of electromagnetic wave are of great significance in modern optical applications. However, conventional polarization devices are bulky, monofunctional and lack of tunability, which pose great challenges to the miniaturized and multifunctional applications. Herein, we propose a meta-device that is capable of multi-state polarization rotation and vector field steering based on phase change metasurface. The supercell of the meta-device consists of four Ge2Sb2Te5 (GST) elliptic cylinders located on a SiO2 substrate. By independently controlling the phase state (amorphous or crystalline) of each GST elliptic cylinder, the meta-device can rotate the polarization plane of the linearly polarized incident light to different angles that cover from 19.8° to 154.9° at a wavelength of 1550 nm. Furthermore, by merely altering the phase transition state of GST elliptic cylinders, we successfully demonstrated a vector field steering by generating optical vortices carrying orbital angular momentums (OAMs) with topological charges of 0, 1 and −1, respectively. The proposed method provides a new platform for investigating dynamically tunable optical devices and has potential applications in many fields such as optical communications and information processing.  相似文献   

6.
Two new types of layered structures were found in binary mixtures of n-alkanes ranging from C122H246 to C294H590. At high temperatures a semicrystalline form is the stable phase, having a regular structure of alternating crystalline and amorphous layers. The two long-chain compounds are mixed in the crystalline layers and the amorphous layers consist of the surplus length of the longer chains. At lower temperatures a reversible transition occurs to a triple layer superlattice structure with a periodicity of up to 50 nm. These two new phases allow the existence of binary solid solutions of chains with a length ratio of up to 1.7 and a chain length difference of 100 CH2 groups.  相似文献   

7.
通过反应溅射的方法,制备了N掺杂的Ge2Sb2Te5(N-GST)薄膜,用作相变存储器的存储介质.研究表明,掺杂的N以GeN的形式存在,不仅束缚了Ge2Sb2Te5 (GST)晶粒的长大也提高了GST的晶化温度和相变温度.利用N-GST薄膜的非晶态、晶态面心立方相和晶态六方相的电阻率差异,能够在同一存储单元中存储三个状态,实现相变存储器的多态存储功能. 关键词: 相变存储器 多态存储 N掺杂 2Sb2Te5')" href="#">Ge2Sb2Te5  相似文献   

8.
This paper reviews the work we have carried out over the last years on the development of ultrashort-laser-pulse-driven, rewritable, phase-change optical memories. The materials we have tailored for this application are non-stoichiometric, Sb-rich amorphous thin films, which can be crystallized upon irradiation with ultrashort laser pulses, showing a large optical contrast upon transformation. This result makes them very promising for the development of rewritable phase-change optical memories under ultrashort pulses, since the reversibility of the process has also been demonstrated. Adequate control of the heat-flow conditions has allowed us to achieve a full transformation time faster than 400 ps for crystallization/amorphization using 30-ps pulses. The crystallization threshold fluence has been found to decrease upon irradiation with pulses shorter than 800 fs, thus suggesting the relevance of high-electronic-excitation-induced processes in the amorphous-to-crystalline phase transition. This has been confirmed by the observation of an ultrafast, non-thermal phase transition occurring 200–300 fs after the arrival of the laser pulse at the surface, for fluences above the crystallization threshold. The presence of this transient phase conditions the final state induced therefore enabling the applicability of this material as a rewritable recording medium using femtosecond pulses. Received: 11 October 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +34-91/564-5557, E-mail: J.Solis@io.cfmac.csic.es  相似文献   

9.
典型高分子材料的固体核磁共振研究   总被引:1,自引:1,他引:0  
本论文通过固体核磁共振(NMR)谱及动力学参量的测量,并结合X-射线衍射技术和DSC测量等研究了两种典型高分子材料的相结构、链的运动以及相与相之间的关系.  乙烯-醋酸乙烯共聚物( EVA) 是最主要的乙烯共聚物之一. 研究发现,EVA的相组成非常复杂,共有5个不同的组分. 除了PE中所观察到的常规单斜晶相和刚性的正交晶相外,我们发现还存在第三个晶相分量-运动性较强的晶相(SOCP,可能是转动相). 它不仅拥有自己的熔点,而且它的化学位移和分子运动性不同于刚性正交晶相(LOCP). 另一方面,非晶相也由两种不同的分量组成:运动受限的各相异性的非晶界面相和高度可动的橡胶型的非晶相. 我们进一步详细研究了EVA中的晶区链动力学和非晶区的低温冻结行为. 实验发现,在正交晶相中,高分子链以180° flip-flop方式运动,同时伴随沿链方向的平移型跳跃运动,并引起正交晶相和非晶相之间的长程链扩散,通过NOE的测量证实了这种相间链扩散的存在,并进一步通过实验证实这种相间链扩散是一种受限扩散而不是自由扩散. 同时非晶相的两个组分具有不同的低温冻结行为:当温度低于-弛豫转变温度时,橡胶型的非晶相中的长程分子运动被冻结,但仍存在分子的局域运动;而界面非晶在低温时冻结成一种有序取向结构,并用质子自旋扩散实验证实该有序结构与正交晶相相邻近.  少量纳米级片层状粘土分散在聚合物中就可赋予材料许多优异的性能,我们用固体NMR技术对EVA/REC复合材料的结构和其中粘土的分散性质进行研究,发现上述复合材料中所形成的晶体类型不仅依赖于各组分的性质还依赖于所形成的复合材料的类型.  偏氟乙烯/三氟乙烯共聚物(P(VDF-TrFE))是最主要的铁电高聚物之一. 我们利用变温固体19F MAS NMR 谱及弛豫数据的测量详细研究了电子辐照对P(VDF-TrFE)共聚物的分子结构、构型、运动性以及相变等的影响. 发现,电子辐照不仅改变了分子链段的构型和运动性,同时也改变了局部分子化学结构. 电子辐照促使铁电相向顺电相(或者非晶相)转变,与此同时诱发了富含VDF和含-TrFE链段从全反式的构型到混合的反式-旁式构型的转变. 电子辐照加剧顺电区域中的分子运动而在高温熔融态中(>100 ℃),分子的运动反而受限.  相似文献   

10.
Ultrafast laser-induced phase transitions in amorphous GeSb films   总被引:2,自引:0,他引:2  
Time-resolved measurements of the spectral dielectric function reveal new information about ultrafast phase transitions induced by femtosecond laser pulses in Sb-rich amorphous GeSb films. The excitation generates a nonthermal phase within 200 fs. The dielectric function of this phase differs from that of the crystalline phase, contrary to previous suggestions of a disorder-to-order transition. The observed dielectric function is close to that of the liquid phase, indicating an ultrafast transition from the amorphous phase to a different disordered state.  相似文献   

11.
We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge–Te, Sb–Te and Te–Te bond lengths. In element substitutes Sb to form In–Te-like structure in the GST system. In–Te has a weaker bond strength compared with the Sb–Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation \( \alpha h\nu = \beta (h\nu - E_{\text{g }} )^{2} \) . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.  相似文献   

12.
Defects in thin film silicon with different structure all the way from amorphous to microcrystalline were investigated by electron spin resonance with emphasis on amorphous material prepared close to the transition to crystalline growth. Electron beam irradiation and stepwise annealing is used for reversible variation of the defect density over three orders of magnitude. The electron irradiation enhances mainly the native paramagnetic defects. Additional resonances are found as satellites to the central line, which anneal rapidly at temperatures below 100 °C. These features are most pronounced for the amorphous material prepared close to the transition to crystalline growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Ion irradiation of thin layers of crystalline semiconductors induces a phase transition to the amorphous state. The concomitant optical contrast between unirradiated, crystalline, and irradiated, amorphous, material may be used for pattern fabrication in the submicron range. This process will be explained by the example of silicon single-crystal layers on sapphire.International Patents pending  相似文献   

14.
Abstract

X-ray diffraction has been measured for crystalline silicon, crystalline germanium, amorphous silicon and amorphous germanium at temperatures down to 100 K and pressures up to 20 GPa using a diamond anvil cell and synchrotron radiation. The structural phase transitions, including amorphization, take place in the pressure-temperature range. It has been found that the structures after the phase transitions strongly depend on the path in the pressure-temperature diagram through which the system undergoes the phase transitions. For any of the aforementioned four materials, the high-pressure phase with the p-Sn structure is quenched during a release of pressure at 100 K, and transforms into an amorphous state when heated up to around 2 GPa. The path dependence of the states is discussed in relation to the pressure dependence of the heights of the energy barriers which have to be overcome when phase transitions occur. The effect of a structural disorder on the phase transition is also discussed by comparing the experimental results for the crystalline and amorphous materials.  相似文献   

15.
Under irradiation metastable quasicrystals undergo a phase transition to an amorphous state. This transition can be reversed by annealing. As in normal crystalline materials the phase transition is considered to be triggered by generation and recombination of vacancies and interstitial atoms (Frenkel pairs). We have classified the possible Frenkel defects in a metastable monatomic quasicrystal with respect to geometric and energetic properties. With numerical simulation we have studied the behaviour of the quasicrystal under a load of Frenkel defects for various defect concentrations. We find three ranges of behaviour: up to 5% defects per atom the structure remains icosahedral, in a middle range it stays disordered icosahedral or it becomes either disordered or perfect crystalline, depending on the implementation of the defects. If there are more than 10% defects the structure becomes irreversibly amorphous. We finally compare our results with experimental data.  相似文献   

16.
Relaxation processes and structural transitions in nonstretched and uniaxially stretched films of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and its homopolymer polyvinylidene fluoride (PVDF) for comparison were investigated with the aim of understanding the electromechanical properties of this lower-modulus ferroelectric copolymer. The mechanical and the dielectric response at the glass transition (?? a relaxation) exhibit similar temperature dependence of the relaxation time, whereas mechanical and dielectric processes above the glass transition are not related. They represent a continuous softening process within the amorphous phase and the dielectric ?? c relaxation, respectively. The latter is attributed to conformational changes of VDF segments in lamellae of spherulites constituting the nonpolar crystalline ?? phase. Furthermore, there is a contribution from melting of secondary crystallites formed in the amorphous phase during annealing or storage. Mechanically, this transition appears in nonstretched and stretched films as an accelerated decrease of the elastic modulus that terminates the rubber plateau. Dielectrically, this transition becomes visible as a frequency-independent loss peak only in stretched films, because stretching removes the ?? c relaxation, which superimposes the transition in nonstretched films. Melting of secondary crystallites is shown to appear in the homopolymer, too, though less pronounced because of more complete primary crystallisation. Stretching increases the modulus above the glass transition only slightly, and it does not significantly influence the softening process. On the other hand, stretching causes a spontaneous polarisation and introduces order within the amorphous phase, rendering it more polar. Melting of secondary crystallites provides an additional contribution to the polarisation. These findings may explain the relatively high electromechanical activity of P(VDF-HFP) but also its relatively low thermal stability. Moreover, they may be important for correct procedure and analysis of temperature-dependent dielectric measurements on partially crystalline polymers, in particular on those with less favourable sterical conditions for primary crystallisation.  相似文献   

17.
The effect of polarization temperature on the chain segment motion and charge trapping and detrapping in polyamide 610 films has been investigated by means of thermally stimulated depolarization current (TSDC) and wide-angle X-ray diffraction (WAXD). A small part of the amorphous phase of quenched polyamide 610 changes into the crystalline state with increasing polarization temperature. There are three current peaks (named α, ρ1, and ρ2 peak, respectively) in the TSDC spectra. The α peak corresponds to the glass transition, the ρ 1 peak is attributed to space charge trapped in the amorphous phase, and interphase between crystalline and amorphous phases, and the ρ 2 peak originates from space charge trapped in the crystalline phase. By analyzing the characteristic parameters of these peaks, it was found that the increase of polarization temperature induced a decrease of the chain segment mobility and promoted the creation of structural traps in polyamide 610. The decrease of the chain segment mobility in the amorphous phase made the intensity of the α peak weak and the activation energy increased. The higher the polarization temperature, the higher the degree of crystallinity and the more charge carriers trapped in the crystalline phase. So, the increase of polarization temperature made the intensity of the ρ 2 peak strong and increased the stability of trapped charge in the crystalline phase. The increase of polarization temperature also made the intensity of the ρ 1 peak strong and decreased the stability of trapped charge in the amorphous phase and interphase.  相似文献   

18.
《Physics Reports》1988,161(1):1-41
The formation of amorphous alloys by a solid state reaction without any rapid quenching is reviewed. The crystal to glass transition is driven by the large negative heat of mixing of the crystalline reactants. Kinetic constraints assure the formation of an amorphous phase instead of the crystalline equilibrium phases. A comparison with other recently developed methods, like ion beam mixing, and a comparison of some physical properties between differently prepared amorphous alloys of the same composition are given.  相似文献   

19.
The thickness dependent crystallization behavior of thin amorphous Ge2Sb2Te5(GST) films sandwiched between different cladding materials has been investigated based on a thermodynamic model. It is revealed that there is a critical thickness below which the crystallization cannot occur. The critical thickness is determined by the energy difference Δγ between the crystalline GST/substrate interface energy and the amorphous GST/substrate interface energy, the melting enthalpy, and the mole volume. The calculated result is in good agreement with the experiments. Furthermore, the crystallization temperature is also affected by interface energy difference Δγ. Larger Δγ gives rise to a higher crystallization temperature, and vice versa. This impact becomes stronger as the film thickness is decreased.  相似文献   

20.
林怀俊  朱云峰  刘雅娜  李李泉  朱敏 《物理学报》2017,66(17):176105-176105
非晶态合金在力学性能、耐磨耐蚀性、磁性等方面比传统晶态合金具有显著优势,是一类有优良应用前景的新型结构与功能材料.非晶态合金与氢相互作用可以产生很多有趣的物理化学现象和应用.本文从物理基础和材料应用两个方面评述非晶态合金和氢相互作用的研究进展,在物理基础研究方面,从氢在非晶态合金中的存在状态出发,讨论氢在非晶态合金中的溶解、分布、占位和扩散等相关物理问题,进而分析氢对非晶态合金的热稳定性、磁性、内耗、氢脆等的影响.在材料应用研究方面,对非晶态储氢合金、非晶态合金氢功能膜、吸氢改善非晶态合金的塑性和玻璃形成能力、氢致非晶化、利用非晶态合金制备纳米储氢材料等方面的研究进展进行评述.最后总结并展望有关非晶态合金与氢相互作用的研究和应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号