首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new system of the entangled photon generation and recovery using a Gaussian pulse traveling within the nonlinear micro ring resonators, whereas the cloning feasibility of the entangled photon states via an add/drop multiplexer is also proposed. Firstly, the optimum entangled photon visibility is generated by using the Gaussian pulse in the ring resonators, where the second harmonic pulses are generated by filtering the chaotic signals. Secondly, the small amount of the transmission power is coupled by the add/drop device, whereas the entangled photon states, i.e. cloning states, are regenerated by using the polarization control unit. Results obtained have shown that the recovery entangled photon states can be made and confirmed with the initial states, which means that the cloning of entangled photon states of the initial states is plausible. The amplified entangled photon for state recovery is also discussed.  相似文献   

2.
We prove that it is impossible to distill more entanglement from a single copy of a two-mode bipartite entangled Gaussian state via local Gaussian operations and classical communication. More generally, we show that any hypothetical distillation protocol for Gaussian states involving only Gaussian operations would be a deterministic protocol. Finally, we argue that the protocol considered by Eisert et al. [preceding Letter, Phys. Rev. Lett. 89, 137903 ()]] is the optimum Gaussian distillation protocol for two copies of entangled Gaussian states.  相似文献   

3.
Entanglement purification of gaussian continuous variable quantum states   总被引:1,自引:0,他引:1  
We describe an entanglement purification protocol to generate maximally entangled states with high efficiencies from two-mode squeezed states or from mixed Gaussian continuous entangled states. The protocol relies on a local quantum nondemolition measurement of the total excitation number of several continuous variable entangled pairs. We propose an optical scheme to do this kind of measurement using cavity enhanced cross-Kerr interactions.  相似文献   

4.
《Physics letters. A》2005,344(5):346-350
We present an experimental demonstration to manipulate the width and position of the down-converted beam waist. Our results can be used to engineer the two-photon orbital angular momentum (OAM) entangled states (such as concentrating OAM entangled states) and generate Hermite–Gaussian (HG) modes entangled states.  相似文献   

5.
The concept of steering was introduced by Schr?dinger in 1935 as a generalization of the Einstein-Podolsky-Rosen paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original Einstein-Podolsky-Rosen paradox.  相似文献   

6.
We investigate continuous variable (CV) quantum teleportation using relevant classes of non-Gaussian states of the radiation field as entangled resources. First, we introduce the class two-mode squeezed symmetric superposition of Fock states, including finite truncations of twin-beam Gaussian states as special realizations. These states depend on a set of free independent parameters that can be adjusted for the optimization of teleportation protocols, with an enhancement of the success probability of teleportation both for coherent and Fock input states. We show that the optimization procedure reduces the entangled resources to truncated twin beam states, which thus represents an optimal class of non-Gaussian resources for quantum teleportation. We then introduce a further class of two-mode non-Gaussian entangled resources, in the form of squeezed cat-like states. We analyze the performance and the properties of such states when optimized for (CV) teleportation, and compare them to the optimized squeezed Bell-like states introduced in a previous work [12]. We discuss how optimal resources for teleportation are characterized by a suitable balance of entanglement content and squeezed vacuum affinity. We finally investigate the effects of thermal noise on the efficiency of quantum teleportation. To this aim, a convenient framework is to describe noisy entangled resources as linear superpositions of non-Gaussian state and thermal states. Although the presence of the thermal component strongly reduces the teleportation fidelity, noisy non-Gaussian states remain preferred resources when compared to noisy twin-beam Gaussian states.  相似文献   

7.
We study the secrecy properties of Gaussian states under Gaussian operations. Although such operations are useless for quantum distillation, we prove that it is possible to distill a secret key secure against any attack from sufficiently entangled Gaussian states with nonpositive partial transposition. Moreover, all such states allow for key distillation, when Eve is assumed to perform finite-size coherent attacks before the reconciliation process.  相似文献   

8.
Gaussian quantum discord is a measure of quantum correlations in Gaussian systems. Using Gaussian discord, we quantify the quantum correlations of a bipartite entangled state and a separable two-mode mixture of coherent states. We experimentally analyze the effect of noise addition and dissipation on Gaussian discord and show that the former noise degrades the discord, while the latter noise for some states leads to an increase of the discord. In particular, we experimentally demonstrate the near death of discord by noisy evolution and its revival through dissipation.  相似文献   

9.
We consider the optimal cloning of quantum coherent states with single-clone and joint fidelity as figures of merit. While the latter is maximized by a Gaussian cloner, the former is not: the optimal single-clone fidelity for a symmetric 1-to-2 cloner is 0.6826, compared to 2/3 in a Gaussian setting. This cloner can be realized with an optical parametric amplifier and certain non-Gaussian bimodal states. Finally, we show that the single-clone fidelity of the optimal 1-to-infinity cloner is 1/2. It is achieved by a Gaussian scheme and cannot be surpassed even with supplemental bound entangled states.  相似文献   

10.
We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.  相似文献   

11.
We introduce examples of three- and four-mode entangled Gaussian mixed states that are not detected by the scaling and Peres–Horodecki separability criteria. The presented modification of the scaling criterion resolves this problem. Also it is shown that the new criterion reproduces the main features of the scaling pictures for different cases of entangled states, while the previous versions lead to completely different outcomes. This property of the presented scheme is evidence of its higher generality.  相似文献   

12.
The time-domain properties of Einstein-Podolsky-Rosen (EPR) entangled states of light are studied by means of analysis of both the Wigner functions and variance of quadrature amplitudes of generated modes. As a source of EPR states a non-degenerate optical parametric oscillator is considered driven by a sequence of laser pulses with a Gaussian time envelope.  相似文献   

13.
Two-photon imaging with thermal light   总被引:3,自引:0,他引:3  
We report the first experimental demonstration of two-photon imaging with a pseudothermal source. Similarly to the case of entangled states, a two-photon Gaussian thin lens equation is observed, indicating EPR type correlation in position. We introduce the concepts of two-photon coherent and two-photon incoherent imaging. The differences between the entangled and the thermal cases are explained in terms of these concepts.  相似文献   

14.
Yu Zhu  Xiaojun Liu  Licheng Zhang  Yun Zhu  Yixin Zhang 《Optik》2013,124(24):6853-6856
Based on the paraxial approximation of the beams propagation in communication system, the square approximation of the wave structure function, the Zernike polynomial expansion of the non-Kolmogorov atmospheric turbulence-aberration and the assumption of the signal photon propagation in slant Zernike tilt corrected turbulence-channel, we analyze the effect of the multi-beam on entangled orbital angular momentum states. The joint detection probability of orbital angular momentum state entangled photons is modeled. Our work shows that the correction of the Zernike tilt aberration by adaptive optics is a method to improve the joint detection probability of orbital angular momentum state entangled photons. The crosstalk probability of the entangled orbital angular momentum states decreases as increasing of the degree of the spatial coherence of the partially coherent source and the beamlet number of the multil-Laguerre Gaussian Schell model beams.  相似文献   

15.
We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.  相似文献   

16.
We present an event-ready procedure that is capable of distilling Gaussian two-mode entangled states from a supply of weakly entangled states that have become mixed in a decoherence process. This procedure relies on passive optical elements and photon detectors distinguishing the presence and the absence of photons, but does not make use of photon counters. We identify fixed points of the iteration map, and discuss in detail its convergence properties. Necessary and sufficient criteria for the convergence to two-mode Gaussian states are presented. On the basis of various examples we discuss the performance of the procedure as far as the increase of the degree of entanglement and two-mode squeezing is concerned. Finally, we consider imperfect operations and outline the robustness of the scheme under non-unit detection efficiencies of the detectors. This analysis implies that the proposed protocol can be implemented with currently available technology and detector efficiencies.  相似文献   

17.
We discuss the entanglement properties of bipartite states with Gaussian Wigner functions. For the separability, and the positivity of the partial transpose, we establish explicit necessary and sufficient criteria in terms of the covariance matrix of the state. It is shown that, for systems composed of a single oscillator for Alice and an arbitrary number for Bob, positivity of the partial transpose implies separability. However, this implication fails with two oscillators on each side, as we show by constructing a five parameter family of bound entangled Gaussian states.  相似文献   

18.
In view of the photon-number tomograms of two-mode light states, using the qubit-portrait method for studying the probability distributions with infinite outputs, the separability and entanglement detection of the states are studied. Examples of entangled Gaussian state and Schrödinger cat state are discussed.  相似文献   

19.
We develop the minimal requirements for the complete entanglement quantification of an arbitrary two-mode bipartite Gaussian state via local measurements and a classical communication channel. The minimal set of measurements is presented as a reconstruction protocol of local covariance matrices and no previous knowledge of the state is required but its Gaussian character. The protocol becomes very simple mostly when dealing with Gaussian states transformed to its standard form, since photocounting or intensity measurements define the whole set of entangled states. In addition, conditional on some prior information, the protocol is also useful for a complete global state reconstruction.  相似文献   

20.
We study Gaussian valence bond states of continuous variable systems obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites applied at each ofN sites of a harmonic chain. The entanglement distribution in Gaussian valence bond states can be controlled by varying the input amount of entanglement engineered in a (2M+ 1)-mode Gaussian state known as the building block, which is isomorphic to the projector applied at a given site. We show how this mechanism can be interpreted in terms of multiple entanglement swapping from the chain of ancillary bonds, through the building blocks. We provide optical schemes to produce bisymmetric three-mode Gaussian building blocks (which correspond to a single bond, M = 1), and study the entanglement structure in the output Gaussian valence bond states. Finally, the usefulness of such states for quantum communication protocols with continuous variables, like telecloning and teleportation networks, is discussed. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号