首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum Hall ferromagnetism in graphene   总被引:4,自引:0,他引:4  
Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-energy excitations. When Zeeman and spin-orbit interactions are neglected, its Landau levels are fourfold degenerate, explaining the 4e2/h separation between quantized Hall conductivity values seen in recent experiments. In this Letter we derive a criterion for the occurrence of interaction-driven quantum Hall effects near intermediate integer values of e2/h due to charge gaps in broken symmetry states.  相似文献   

2.
3.
Quantum spin Hall effect in graphene   总被引:1,自引:0,他引:1  
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.  相似文献   

4.
We study the electronic edge states of graphene in the quantum Hall regime. For non-interacting electrons, graphene supports both electron-like and hole-like edge states. We find there are half as many edge states of each type in the lowest Landau level compared to higher Landau levels, leading to a quantization of the Hall conductance that is shifted relative to standard two dimensional electron gases. We also consider the effect of quantum Hall ferromagnetism on this edge structure, and find an unusual Luttinger liquid at the edge in undoped graphene. This arises due to a domain wall that forms near the edge between partially spin-polarized and valley-polarized regions. The domain wall has a U(1) degree of freedom which generates both collective and charged gapless excitations, whose consequences for tunneling experiments are discussed.  相似文献   

5.
6.
We have measured the quantum Hall activation gaps in bilayer graphene at filling factors ν=±4 and ν=±8 in high magnetic fields up to 30 T. We find that energy levels can be described by a 4-band relativistic hyperbolic dispersion. The Landau level width is found to contain a field independent background due to an intrinsic level broadening and a component which increases linearly with magnetic field.  相似文献   

7.
We address the quantum Hall behavior in twisted bilayer graphene transferred from the C face of SiC. The measured Hall conductivity exhibits the same plateau values as for a commensurate Bernal bilayer. This implies that the eightfold degeneracy of the zero energy mode is topologically protected despite rotational disorder as recently predicted. In addition, an anomaly appears. The densities at which these plateaus occur show a magnetic field dependent offset. It suggests the existence of a pool of localized states at low energy, which do not count towards the degeneracy of the lowest band Landau levels. These states originate from an inhomogeneous spatial variation of the interlayer coupling.  相似文献   

8.
9.
According to our scheme to construct quantum phase transitions (QPTs) in spin chain systems with matrix product ground states, we first successfully combine matrix product state (MPS) QPTs with spontaneous symmetry breaking. For a concrete model, we take into account a kind of MPS QPTs accompanied by spontaneous parity breaking, though for either side of the critical point the GS is typically unique, and show that the kind of MPS QPTs occur only in the thermodynamic limit and are accompanied by the appearance of singularities, diverging correlation length, vanishing energy gap and the entanglement entropy of a half-infinite chain not only staying finite but also whose first derivative discontinuous.  相似文献   

10.
We investigate transport in a gate-defined graphene quantum point contact in the quantum Hall regime. Edge states confined to the interface of p and n regions in the graphene sheet are controllably brought together from opposite sides of the sample and allowed to mix in this split-gate geometry. Among the expected quantum Hall features, an unexpected additional plateau at 0.5h/e2 is observed. We propose that chaotic mixing of edge channels gives rise to the extra plateau.  相似文献   

11.
祝敬敏 《中国物理 C》2011,35(2):144-148
According to our scheme to construct quantum phase transitions (QPTs) in spin chain systems with matrix product ground states, we first successfully combine matrix product state (MPS) QPTs with spontaneous symmetry breaking. For a concrete model, we take into account a kind of MPS QPTs accompanied by spontaneous parity breaking, though for either side of the critical point the GS is typically unique, and show that the kind of MPS QPTs occur only in the thermodynamic limit and are accompanied by the appearance of singularities, diverging correlation length, vanishing energy gap and the entanglement entropy of a half-infinite chain not only staying finite but also whose first derivative discontinuous.  相似文献   

12.
We investigate the quantum Hall (QH) states near the charge-neutral Dirac point of a high mobility graphene sample in high magnetic fields. We find that the QH states at filling factors nu=+/-1 depend only on the perpendicular component of the field with respect to the graphene plane, indicating that they are not spin related. A nonlinear magnetic field dependence of the activation energy gap at filling factor nu=1 suggests a many-body origin. We therefore propose that the nu=0 and +/-1 states arise from the lifting of the spin and sublattice degeneracy of the n=0 Landau level, respectively.  相似文献   

13.
In this paper we show the electronic transport and the quantum phase transitions that characterize the quantum Hall regime in graphene placed on SiO(2) substrates at magnetic fields up to 28 T and temperatures down to 4 K. The analysis of the temperature dependence of the Hall and longitudinal resistivity reveals intriguing non-universalities of the critical exponents of the plateau-insulator transition. These exponents depend on the type of disorder that governs the electrical transport and its characterization is important for the design and fabrication of novel graphene nano-devices.  相似文献   

14.
The competition between the Zeeman energy and the Rashba and Dresselhaus spin-orbit couplings is studied for fractional quantum Hall states by including correlation effects. A transition of the direction of the spin polarization is predicted at specific values of the Zeeman energy. We show that these values can be expressed in terms of the pair-correlation function, and thus provide information about the microscopic ground state. We examine the particular examples of the Laughlin wave functions and the 5/2-Pfaffian state. We also include effects of the nuclear bath.  相似文献   

15.
16.
Switching between the states of a buckled graphene membrane for non-volatile memory applications has been studied. The structure of a zigzag graphene strip bent by a force applied to the central region has been investigated by means of the density functional theory with the use of a B3LYP/6-31G approximation. The initial state of the buckled graphene membrane has the geometry of a segment of a half of a (20,0) carbon nanotube with a length of 5 hexagons. The force has been simulated by sequential displacement of the central atoms of the strip toward the fixed edges of the structure. The dependences of the deformation energy and internal forces on the positions of central atoms have been found. Spontaneous breaking of the membrane symmetry decreasing the energy threshold between the states has been discovered.  相似文献   

17.
18.
The electron-electron and electron-background interaction energies are calculated analytically for systems with up to N = 6 electrons. The method consists of describing the position vectors of electrons using complex coordinates and all the interaction energies with complex notation, whereby simplifications become possible. As is known, in this type of calculation, complicated expressions involving integrals over many variables are encountered and the trick of using complex coordinates greatly facilitates the exact calculation of various quantities. Contrary to previous analytical calculations, using complex coordinates avoids complicated trigonometric functions from appearing in the integrand, simplifying the exact evaluation of the integrals. The method we have used can be straightforwardly extended to larger systems with N > 6 electrons.  相似文献   

19.
Chirally stacked N-layer graphene systems with N≥2 exhibit a variety of distinct broken symmetry states in which charge density contributions from different spins and valleys are spontaneously transferred between layers. We explain how these states are distinguished by their charge, spin, and valley Hall conductivities, by their orbital magnetizations, and by their edge state properties. We argue that valley Hall states have [N/2] edge channels per spin valley.  相似文献   

20.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号