首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four-component Bogoliubov-de Gennes equations are applied to study tunneling conductance spectra of ferromagnet/ferromagnet/d-wave superconductor (F1/F2/d-wave S) tunnel junctions and to find out signs of spin-triplet pairing correlations induced in the proximity structure. The pairing correlations with equal spins arises from the novel Andreev reflection (AR), which requires at least three factors: the usual AR at the F2/S interface, spin flip in the F2 layer, and superconducting coherence kept up in the F2 layer. Effects of angle α between magnetizations of the two F layers, polarizations of the F1 and F2 layers, the thickness of the F2 layer, and the orientation of the d-wave S crystal on the tunneling conductance are investigated. A conversion from a zero-bias conductance dip at α = 0 to a zero-bias conductance peak at a certain value of α can be seen as a sign of generated spin-triplet correlations.  相似文献   

2.
By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energies are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional ss-wave SC are also presented, which may help with experimentally probing and identifying the antiphase ss-wave pairing symmetry in the iron-based SC.  相似文献   

3.
金霞  董正超  梁志鹏  仲崇贵 《物理学报》2013,62(4):47401-047401
通过求解磁性d波超导中的能隙和磁交换能的自洽方程, 研究磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森电流. 计算结果表明: 1)临界电流随中间的铁磁层厚度呈现出两种不同周期的振荡混合, 通过增强铁磁层中的磁交换能q0和铁磁/磁性d波超导界面处的势垒强度z0, 短周期分量可从长周期中分离出来, 反之, 通过降低q0z0, 长周期分量可从短周期中分离出来; 2)在两边磁性d波超导的磁化方向取平行时, 在取一些特定的铁磁层厚度下, 磁性d波超导中的磁交换能可增强系统的临界电流. 关键词: 磁性d波超导体 铁磁体 约瑟夫森电流  相似文献   

4.
Within a scattering framework, a theoretical study is presented for the spin-polarized quasiparticle transport in ferromagnet/d-wave superconductor junctions. We find that the subgap conductance behavior is qualitatively different from a nonmagnetic junction, and can also be significantly different from those of a ferromagnet/s-wave junction. For a ballistic ferromagnet/d-wave superconductor junction, under appropriate conditions, a zero-bias conductance minimum could be achieved. In addition, a conductance maximum at finite bias could be evolved by interfacial scattering. For a normal-metal/ferromagnet/d-wave superconductor junction, conductance resonances are predicted.  相似文献   

5.
The superconducting proximity effect in normal metal/insulator/ferromagnet/d-wave superconductor (N/I/F/D) structures is studied based on an extended Blonder–Tinkham–Klapwijk (BTK) theory. The transition from the “0” to “π” state is found in the conductance spectra with increasing thickness of F or the ferromagnetic exchange energy. The superconducting proximity effect is drastically changed by the orientation angle α, as α increases the proximity effect is enhanced, being strongest for α/π = 0.25.  相似文献   

6.
We study triplet pairing correlations in clean ferromagnet (F)/superconductor (S) nanojunctions, via fully self-consistent solution of the Bogoliubov-de Gennes equations. We consider FSF trilayers, with S being an s-wave superconductor, and an arbitrary angle alpha between the magnetizations of the two F layers. We find that contrary to some previous expectations, triplet correlations, odd in time, are induced in both the S and F layers in the clean limit. We investigate their behavior as a function of time, position, and alpha. The triplet amplitudes are largest at times on the order of the inverse Debye frequency, and at that time scale they are long-ranged in both S and F. The zero temperature condensation energy is found to be lowest when the magnetizations are antiparallel.  相似文献   

7.
8.
Andreev bound states in monoatomic superconductor–ferromagnet (S/F) superlattices are studied theoretically, assuming tunneling between S and F layers in perpendicular direction. Andreev reflection at S/F interfaces is strongly affected by the exchange interaction h in F layers. In the ground state, only for h≠0 zero-energy states (ZES) are formed on S and F layers. For h=0, corresponding to superconductor–normal metal (S/N) superlattices, ZES may appear in the nonequilibrium phase, =π. This is found both for s-wave and d-wave symmetry of the order parameter in S. The conditions for ZES are obtained as a function of h, of the transfer integral t for movement of quasiparticles (QPs) between S and F layers, and of the corresponding ground state phase difference eq between two neighboring S layers.  相似文献   

9.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

10.
We develop a theory of the conductance of superconductor/normal metal/superconductor junctions in the case where the superconducting order parameter has d-wave symmetry. At low temperature the conductance is proportional to the square root of the inelastic electron relaxation time in the bulk of the superconductor. As a result it turns out to be much larger than the conductance of the normal part of the junction.  相似文献   

11.
This paper solves a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation, and studies the Zeeman effects on the d-wave superconducting gap and thermodynamic potential. The Josephson currents in the d-wave superconductor(S)/insulating layer(I)/d-wave S junctions are calculated as a function of the temperature, exchange field, and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss. It is found that the Josephson critical currents in d-wave S/d-wave S junction to a great extent depend on the relative orientation of the effective exchange field of the two S electrodes, and the crystal orientation of the d-wave S. The exchange field under certain conditions can enhance the Josephson critical current in a d-wave S/I/d-wave S junction.  相似文献   

12.
We have measured the superconducting transition temperature Tc of Ni/Nb/Ni trilayers when the magnetizations of the two outer Ni layers are parallel (P) and antiparallel (AP). The largest difference in occurs when the Nb thickness is just above the critical thickness at which superconductivity disappears completely. We have observed a difference in Tc between the P and AP states as large as 41 mK--a significant increase over earlier results in samples with higher Tc and with a CuNi alloy in place of the Ni. Our result also demonstrates that strong elemental ferromagnets are promising candidates for future investigations of ferromagnet/superconductor heterostructures.  相似文献   

13.
The Bogoliubov-de Gennes equation and Nambu spinor Green's function approach are applied to studying the Josephson current in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions in the clean limit. It is found that the critical current exhibits a damped oscillation with the F thickness d, the oscillation period equal to 2πξF with ξF the coherence length of the F. The change of the critical current from positive to negative is determined by factor cosφ with φ=d/ξF as the F-induced phase difference. The exponent decay of the critical current is close related to that of the superconductor order parameter in the F, both of them having the same decay length.  相似文献   

14.
《Physics letters. A》2004,325(2):166-174
By using the Bogoliubov–de Gennes equation and the Nambu spinor Greens function approach, we have theoretically studied the dc Josephson current and the coupling phase state of superconductor/ferromagnet/superconductor (SC/FM/SC) junctions, where the FM is of weak ferromagnetism. From the behavior of the temperature-dependent dc Josephson current (Ic), we confirm that such SC/FM/SC junction may change from 0-phase to π-phase state with increasing the temperature (T), for particular parameters of the thickness and the strength of ferromagnetism of the FM interlayer. We attribute such changement to an extra phase difference between the two SCs. The results are qualitatively consistent with an experiment [Phys. Rev. Lett. 86 (2001) 2427], which shows a sharp cusp structure on the IcT curves of Nb/Cu0.48Ni0.52/Nb junction for specific thickness of the Cu0.48Ni0.52, indicating the junction changes from 0-phase state at high temperatures to π-phase state at low temperatures.  相似文献   

15.
We study the Zeeman effect on the d-wave superconductor and tunneling spectrum in normal-metal(N)/d-wave superconductor(S) junction by applying a Zeeman magnetic field to the S. It is shown that: (1) the Zeeman magnetic field can lead to the S gap decreasing, and with the increase in Zeeman energy, the superconducting state is changed to the normal state, exhibiting a first-order phase transition; (2) the Zeeman energy difference between the two splitting peaks in the conductance spectrum is equal to2h0 (h0 is the Zeeman energy); (3) both the barrier strength of interface scattering and the temperature can lower the magnitudes of splitting peaks, of which the barrier strength can lead to the splitting peaks becoming sharp and the temperature can smear out the peaks,however, neither of them can influence the Zeeman effect.  相似文献   

16.
We have experimentally investigated the density of states (DOS) in Nb/Ni (S/F) bilayers as a function of Ni thickness, d(F). Our thinnest samples show the usual DOS peak at +/- Delta(0), whereas intermediate-thickness samples have an anomalous "double-peak" structure. For thicker samples (d(F) > or =3.5 nm), we see an inverted DOS, which has previously only been reported in superconductor or weak-ferromagnet structures. We analyze the data using the self-consistent nonlinear Usadel equation and find that we are able to quantitatively fit the features at +/- Delta(0) -- in particular the thickness at which the inversion occurs -- only if we include a large amount of spin-orbit scattering in the model. Interestingly, we are unable to reproduce the subgap structure through the addition of any parameter(s). Therefore, the observed anomalous subgap structure represents new physics beyond that contained in the present Usadel theory.  相似文献   

17.
The Josephson effect in the superconductor/ferromagnet/superconductor (SFS) graphene Josephson junction is studied using the Dirac Bogoliubov-de Gennes (DBdG) formalism. It is shown that the SFS graphene junction drives 0–π transition with the increasing of p=h0L/vF?, which captures the effects of both the exchange field and the length of the junction; the spin-down current is dominant. The 0 state is stable for p 〈 pc (critical value pc ≈ 0.80) and the π state is stable for p 〉 pc, where the free energy minima are at φg=0 and φg=π, respectively. The coexistence of the 0 and π states appears in the vicinity of pc.  相似文献   

18.
The superconducting and magnetic states of asymmetric ferromagnet/superconductor/ferromagnet (F/S/F′) nanostructures have been investigated using the boundary value problem for the Eilenberger function. It has been shown that 0- and π-phase superconducting states of pure thin F/S/F′ trilayers are controlled by the magnitude and sign of electron correlations in the F and F′ layers, as well as by the competition between homogeneous Bardeen-Cooper-Schrieffer (BCS) pairing and inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) pairing. The LOFF-BCS-LOFF separate re-entrant superconductivity has been predicted for F/S/F′ trilayers. A continuous control of the pair-breaking factor in the Eilenberger function and transition to the state with re-entrant superconductivity is achieved by varying the thickness of the F′ layer. Sine-modulated 2D LOFF states in asymmetric F/S/F′ trilayers are possible not only for parallel, but also for antiparallel orientations of the magnetizations of the F and F′ layers; this fact significantly facilitates the experimental implementation of the predicted phenomena.  相似文献   

19.
In order to calculate the critical temperature of multilayer S/F structures (where S is a superconductor and F is a ferromagnet), a matrix method for solving linearized Usadel equations has been proposed. The spectrum of critical temperatures T (k) for the F/N bl(S/F) structure has been obtained in the single-mode approximation. Eigenfunctions describing the spatial distribution of superconducting correlations in the direction perpendicular to the S-F interfaces have been calculated for each T (k) value. It has been found that dependences of T (k) on the thickness of F layers have a jump near the transition from 0 to π-state; any of the calculated T (k) values can be implemented in the region of jumps. It has been shown that the crossover of eigenstates is characterized by the suppression of superconductivity in outer S layers and by induced countercurrents in F layers. The possibility of the experimental implementation of a state corresponding to a given value from the spectrum of T (k) has been discussed.  相似文献   

20.
The formation of vortex–antivortex states in a superconducting film with a square array of magnetic dipoles magnetized perpendicularly to the film is investigated in the framework of the time-dependent Ginzburg–Landau equations. It is shown that a possible route to obtain equilibrium states is obtained following an experimentally realizable field-cooling procedure. The states thus obtained demonstrate a rich variety of phases, depending on magnetic moment intensity and dipole array-to-superconducting film distance. For instance, in the region of the phase diagram where each dipoles is able to generate N = 2 vortex–antivortex pairs, the antivortices induced by the negative stray fields of the dipoles undergo two transitions before ultimately merging into doubly-quantized giant antivortices. For N = 4, a state consisting on a three-quanta giant vortex below each dipole and an interstitial vortex–antivortex molecule was observed. Such state is thermodynamically stable and is induced by the fourfold symmetry of the dipole array, similar to symmetry-induced vortex–antivortex molecules found in mesoscopic superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号