首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entangled states in high dimensional systems are of great interest due to the extended possibilities they provide in quantum information processing. Recently, Sun et al. [Phys. Rev. A 82, 052323 (2010)] and Kim et al. [Nat. Phys. 8, 117 (2012)] pointed out that weak measurement and quantum weak measurement reversal can actively combat decoherence. We generalize their studies from qubits to qutrits under amplitude damping decoherence. We find that the qutrit-qutrit entanglement can be partially retrieved for certain initial states when only weak measurement reversals are performed. However, we can completely defeat amplitude damping decoherence for any initial states by the combination of prior weak measurements and post optimal weak measurement reversals. The experimental feasibility of our schemes is also discussed.  相似文献   

2.
Atomic momenta states of the neutral atoms are known to be decoherence resistant and therefore present a viable solution for most of the quantum information tasks including the quantum teleportation. We present a systematic protocol for the teleportation of high-dimensional quantized momenta atomic states to the field state inside the cavities by applying standard cavity QED techniques. The proposal can be executed under prevailing experimental scenario.  相似文献   

3.
We apply concepts of quantum optical coherence to characterize the coherent generation of a molecular field from a quantum-degenerate atomic sample, and discuss the impact of the quantum statistics of the atoms on that field. For atoms initially in a BEC the resulting molecular field is to a good approximation coherent. This is in sharp contrast to the case of atoms in a normal Fermi gas, where we can made use of an analogy with the Tavis-Cummings model to show that the statistics of the resulting molecular field is similar to that of a single-mode chaotic light field. The BCS case interpolates between the two extremes, with an 'incoherent' contribution from unpaired atoms superposed to a 'coherent' contribution from atomic Cooper pairs. We also comment on the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms.  相似文献   

4.
Taming decoherence is a critical issue in quantum information science. We here investigate amplitude-damping decoherence suppression of two-qubit entangled states by weak quantum measurements. It is shown that the weak measurements can effectively suppress the decoherence for different initial entangled states. More interestingly, we show that the weak measurements have different effects on the entanglement protection for two entangled states which are equivalent under a local unitary operation. This result implies that the entanglement protection effect could be modulated according to different demands.  相似文献   

5.
量子计算机是一种以量子耦合方式进行信息处理的装置[1 ] 。原则上 ,它能利用量子相干干涉方法以比传统计算机更快的速度进行诸如大数的因式分解、未排序数据库中的数据搜索等工作[2 ] 。建造大型量子计算机的主要困难是噪音、去耦和制造工艺。一方面 ,虽然离子陷阱和光学腔实验方法大有希望 ,但这些方法都还没有成功实现过量子计算。另一方面 ,因为隔离于自然环境 ,核自旋可以成为很好的“量子比特” ,可能以非传统方式使用核磁共振 (NMR)技术实现量子计算。本文介绍一种用NMR方法实现量子计算的方法 ,该方法能够用比传统方法少的步骤解决一个纯数学问题。基于该方法的简单量子计算机使用比传统计算机使用更少的函数“调用”判断一未知函数的类别。  相似文献   

6.
利用量子点与单模腔场共振相互作用模型提出了激子Bell类和W类纠缠态的制备方案.借助于超算符方法和态的保真度考察了所制备的激子纠缠态的消相干特性,结果表明:激子Bell类和W态的纠缠特性非常脆弱,在极短的时间里演变为消纠缠态.基于腔场与两量子点共振相互作用模型设计了一个量子交换门.  相似文献   

7.
The coherence in quantum superposition states of protons (and chemically similar particles, the positive muons) has been studied in some condensed matter environments. It is shown that if the proton systems and the experimental techniques used to study them are carefully selected, it is possible to observe quantum delocalization states of single particles and to understand the mechanisms for their loss of coherence. Quantum correlated two- and multiparticle states of protons lose coherence very fast when coupled to condensed matter environments, but new sub-femtosecond techniques have made them accessible to experimental studies. The degree of decoherence can be measured as function of time and the decoherence mechanisms can, at least in certain cases, be identified. Although less clean than in corresponding studies of quantum optical systems, these studies can be seen as a first step towards understanding the conditions for preservation of quantum correlation and entanglement in massive systems. Some consequences and some suggestions for future work are discussed. Received 28 August 2002 Published online 7 January 2003  相似文献   

8.
I show that the decoherence in a system of degenerate two-level atoms interacting with a bosonic heat bath is for any number of atoms governed by a generalized Hamming distance (called "decoherence metric") between the superposed quantum states, with a time-dependent metric tensor that is specific for the heat bath. The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the overall decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with blackbody radiation.  相似文献   

9.
A controlled interference is proposed to reduce, by two orders of magnitude, the decoherence of a quantum gate for which the gate fidelity is limited by coupling to states other than the /0> and /1> qubit states. This phenomenon is demonstrated in an ultracold neutral atom implementation of a phase gate using qubits based on motional states in individual wells of an optical lattice.  相似文献   

10.
To account for the phenomenon of quantum decoherence of a macroscopic object, such as the localization and disappearance of interference, we invoke the adiabatic quantum entanglement between its collective states (such as that of the center-of-mass (CM)) and its inner states based on our recent investigation. Under the adiabatic limit where motion of the CM does not excite the transition of inner states, it is shown that the wave function of the macroscopic object can be written as an entangled state with correlation between adiabatic inner states and quasi-classical motion configurations of the CM. Since the adiabatic inner states are factorized with respect to each component of the macroscopic object, this adiabatic separation can induce the quantum decoherence. This observation thus provides us with a possible solution to the Schr?dinger cat paradox. Received 24 October 2000 and Received in final form 8 March 2001  相似文献   

11.
Wen-An Li 《Optics Communications》2010,283(14):2978-2981
We propose a scheme to realize W states for N-atoms trapped in two distant cavities connected by an optical fiber. In the scheme, the cavity modes and fiber mode are not excited during the process. The quantum information is encoded in two degenerate ground states, so the atom's spontaneous emission can be omitted approximately. Moreover, the operation speed increases with the number of the atoms without a limitation and thus the scheme is extremely robust against decoherence.  相似文献   

12.
In a two-mode Bose-Josephson junction formed by a binary mixture of ultracold atoms, macroscopic superpositions of phase states are produced during the time evolution after a sudden quench to zero of the coupling amplitude. Using quantum trajectories and an exact diagonalization of the master equation, we study the effect of one-, two-, and three-body atom losses on the superpositions by analyzing separately the amount of quantum correlations in each subspace with fixed atom number. The quantum correlations useful for atom interferometry are estimated using the quantum Fisher information. We identify the choice of parameters leading to the largest Fisher information, thereby showing that, for all kinds of loss processes, quantum correlations can be partially protected from decoherence when the losses are strongly asymmetric in the two modes.  相似文献   

13.
Finding the most robust entangled states during the whole process of decoherence is a particularly fundamental problem for quantum physics and quantum information processing. In this paper, the decoherence process of two-qubit system under two individual identical decoherence channels is investigated systematically. We find that although the robustness of two-qubit states with same initial entanglement is usually different, the Bell-like states are always the most robust entangled states during decoherence. That is to say, affected by the same amount of noise, the remain entanglement of an arbitrary two-qubit state is not more than that of a Bell-like state with the same initial entanglement.  相似文献   

14.
Decoherence suppression from disturbance of the environment is an essential task in quantum information processing. We investigate decoherence suppression of a qubit system interacting with a heat bath with phase decoherence by employing the weak measurement (WM) and quantum measurement reversal (QMR) operation. We show explicitly that the qubit decoherence can be efficiently completely suppressed by means of the combination WM and QMR, which is independent of the form of the spectral density of the reservoir and the form of initial input state.  相似文献   

15.
Towards quantum superpositions of a mirror   总被引:1,自引:0,他引:1  
We propose an experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that the experiment is within reach using a combination of state-of-the-art technologies.  相似文献   

16.
The interaction of a quantum system with the environment leads to the so-called quantum decoherence. Beyond its fundamental significance, the understanding and the possible control of this dynamics in various scenarios is a key element for mastering quantum information processing. Here we report the quantitative probing of what can be called the quantum decoherence of detectors, a process reminiscent of the decoherence of quantum states in the presence of coupling with a reservoir. We demonstrate how the quantum features of two single-photon counters vanish under the influence of a noisy environment. We thereby experimentally witness the transition between the full-quantum operation of the measurement device to the "semi-classical regime", described by a positive Wigner function. The exact border between these two regimes is explicitely determined and measured experimentally.  相似文献   

17.
We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.  相似文献   

18.
于旭东  李卫  朱诗尧  张靖 《中国物理 B》2016,25(2):20304-020304
We study a scheme for Mach-Zehnder(MZ) interferometer as a quantum linear device by injecting two-mode squeezed input states into two ports of interferometer.Two-mode squeezed states can be changed into two types of inputs for MZ interferometer:two squeezed states and Einstein-Podolsky-Rosen(EPR) entangled states.The interference patterns of the MZ interferometer vary periodically as the relative phase of the two arms of the interferometer is scanned,and are measured by the balanced homodyne detection system.Our experiments show that there are different interference patterns and periodicity of the output quantum states for two cases which depend on the relative phase of input optical fields.Since MZ interferometer can be used to realize some quantum operations,this work will have the important applications in quantum information and metrology.  相似文献   

19.
We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entangled optical states.Indeed,the decoherence effect is exploited positively here to generate such kind of quantum channels.Next,the amplitude damping and the entanglement amount of these produced channels are enhanced thereafter by a probabilistic quasi amplification process using again a 50 : 50 beam splitter.  相似文献   

20.
We study the stability of superpositions of macroscopically distinct quantum states under decoherence. We introduce a class of quantum states with entanglement features similar to Greenberger-Horne-Zeilinger (GHZ) states, but with an inherent stability against noise and decoherence. We show that in contrast to GHZ states, these so-called concatenated GHZ states remain multipartite entangled even for macroscopic numbers of particles and can be used for quantum metrology in noisy environments. We also propose a scalable experimental realization of these states using existing ion-trap setups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号