首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We regard binary-black-hole (BBH) merger as a map from a simple initial state (two Kerr black holes, with dimensionless spins a and b) to a simple final state (a Kerr black hole with mass m, dimensionless spin s, and kick velocity k). By expanding this map around a=b=0 and applying symmetry constraints, we obtain a simple formalism that is remarkably successful at explaining existing BBH simulations. It also makes detailed predictions and suggests a more efficient way of mapping the parameter space of binary black-hole merger. Since we rely on symmetry rather than dynamics, our expansion complements previous analytical techniques.  相似文献   

2.
We study the head-on collision of two highly boosted equal mass, nonrotating black holes. We determine the waveforms, radiated energies, and mode excitation in the center of mass frame for a variety of boosts. For the first time we are able to compare analytic calculations, black-hole perturbation theory, and strong field, nonlinear numerical calculations for this problem. Extrapolation of our results, which include velocities of up to 0.94c, indicate that in the ultrarelativistic regime about 14+/-3% of the energy is converted into gravitational waves. This gives rise to a luminosity of order 10_(-2)c_(5)/G, the largest known so far in a black-hole merger.  相似文献   

3.
Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.  相似文献   

4.
Recent models of the black-hole final state suggest that quantum information can escape from a black hole by a process akin to teleportation. These models rely on a controversial process called final-state projection. This Letter discusses the self-consistency of the final-state projection hypothesis and investigates escape from black holes for arbitrary final states and for generic interactions between matter and Hawking radiation. Quantum information escapes with fidelity approximately = (8/3pi)2: only half a bit of quantum information is lost on average, independent of the number of bits that escape from the hole.  相似文献   

5.
We describe early success in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter a approximately 0.70. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.  相似文献   

6.
Saurya Das 《Pramana》2004,63(4):797-815
We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally, we study some proposed experiments which may be able to provide experimental signatures of black holes.  相似文献   

7.
We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.  相似文献   

8.
A paradigm deeply rooted in modern numerical relativity calculations prescribes the removal of those regions of the computational domain where a physical singularity may develop. We here challenge this paradigm by performing three-dimensional simulations of the collapse of uniformly rotating stars to black holes without excision. We show that this choice, combined with suitable gauge conditions and the use of minute numerical dissipation, improves dramatically the long-term stability of the evolutions. In turn, this allows for the calculation of the waveforms well beyond what was previously possible, providing information on the black-hole ringing and setting a new mark on the present knowledge of the gravitational-wave emission from the stellar collapse to a rotating black hole.  相似文献   

9.
The h(c)((1)P(1)) state of charmonium has been observed in the reaction psi(2S) --> pi(0)h(c) --> (gammagamma)(gammaeta(c)) using 3.08 x10(6) psi(2S) decays recorded in the CLEO detector. Data have been analyzed both for the inclusive reaction, where the decay products of the eta(c) are not identified, and for exclusive reactions, in which eta(c) decays are reconstructed in seven hadronic decay channels. We find M(h(c)) = 3524.4 +/- 0.6 +/- 0.4 MeV which corresponds to a hyperfine splitting DeltaM(hf)(1P) triple-bond pi(0)h(c)) x B(h(c) --> gammaeta(c)) = (4.0 +/- 0.8 +/- 0.7) x 10(-4).  相似文献   

10.
We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.  相似文献   

11.
We report on the observation of the eta(')(c)(2(1)S0), the radial excitation of the eta(c)(1(1)S0) ground state of charmonium, in the two-photon fusion reaction gammagamma-->eta(')(c)-->K(0)(S)K+/-pi(-/+) in 13.6 fb(-1) of CLEO II/II.V data and 13.1 fb(-1) of CLEO III data. We obtain M(eta(')(c))=3642.9+/-3.1(stat)+/-1.5(syst) MeV and M(eta(c))=2981.8+/-1.3(stat)+/-1.5(syst) MeV. The corresponding values of hyperfine splittings between 1S0 and 3S1 states are DeltaM(hf)(1S)=115.1+/-2.0 MeV and DeltaM(hf)(2S)=43.1+/-3.4 MeV. Assuming that the eta(c) and eta(')(c) have equal branching fractions to K(S)Kpi, we obtain Gamma(gammagamma)(eta(')(c))=1.3+/-0.6 keV.  相似文献   

12.
Can quantum-information theory shed light on black-hole evaporation? By entangling the in-fallen matter with an external system we show that the black-hole information paradox becomes more severe, even for cosmologically sized black holes. We rule out the possibility that the information about the in-fallen matter might hide in correlations between the Hawking radiation and the internal states of the black hole. As a consequence, either unitarity or Hawking's semiclassical predictions must break down. Any resolution of the black-hole information crisis must elucidate one of these possibilities.  相似文献   

13.
The geometry of the neighborhood near an event horizon is similar to the Rindlermetric, which leads to the thermal effect of black holes. The entropy of the scalarfield and the Dirac field are calculated in the black-hole background. The entropyof the scalar field, which is proportional to the area of the event horizon, isnaturally derived. Under the condition of large-mass black hole, the entropy ofthe Dirac field is still proportional to the area of the horizon. These results canbe applied to a large class of black holes. A new method for calculating the blackhole entropy is proposed which makes it easy to calculate the entropy of ahigh-spin field in the black-hole background. We also consider extreme black holesand point out that the topological entropy only has classical meaning.  相似文献   

14.
We have searched for rare and forbidden decays of the eta(') meson in hadronic events at the CLEO II detector. The search is conducted on 4.80 fb(-1) of e(+)e(-) collisions at 10.6 GeV center-of-mass energy at the Cornell Electron Storage Ring. We find no signals, and set 90% confidence level upper limits of their branching fractions: B(eta(')-->e(+)e(-)eta)<2.4x10(-3), B(eta(')-->e(+)e(-)pi(0))<1. 4x10(-3), B(eta(')-->e(+)e(-)gamma)<0.9x10(-3), and B(eta(')-->e&mgr;)<4.7x10(-4). We also fit the matrix element of the eta(')-->pi(+)pi(-)eta Dalitz plot with the parametrization |M|(2) = A|1+alphay|(2), where y is a linear function of the kinetic energy of the eta, and find Re (alpha) = -0.021+/-0.025.  相似文献   

15.
It has been argued that neutrinos originating from ultrahigh energy cosmic rays can produce black holes deep in the atmosphere in models with TeV-scale quantum gravity. Such black-hole events could be observed at the Auger Observatory. However, any phenomenologically viable model with a low scale of quantum gravity must explain how to preserve protons from rapid decay. We argue that the suppression of proton decay will also suppress lepton-nucleon scattering and hence black-hole production by scattering of ultrahigh energy cosmic ray neutrinos in the atmosphere. We discuss explicitly the split fermion solution to the problem of fast proton decay.  相似文献   

16.
We study semileptonic B decay to the exclusive charmless states pi, rho/omega, eta, and eta;{'} using the 16 fb(-1) CLEO Upsilon(4S) data sample. We find B(B0-->pi-l+nu)=(1.37+/-0.15stat+/-0.11sys)x10(-4) and B(B0-->rho-l+nu)=(2.93+/-0.37stat+/-0.37sys)x10(-4) and find evidence for B+-->eta'l+nu, with B(B+-->eta'l+nu)=(2.66+/-0.80stat+/-0.56sys)x10(-4). From our B-->pilnu rate for q2>16 GeV2 and lattice QCD, we find |Vub|=(3.6+/0.4stat+/0.2syst-0.4thy+0.6)x10(-3) [corrected]  相似文献   

17.
The microscopic structure of black holes remains a challenging subject. In this paper, based on the well-accepted fact that black holes can be mapped to thermodynamic systems, we make a preliminary exploration of the microscopic structure of the thermodynamically stable Schwarzschild anti-de-Sitter(SAdS) black hole. In accordance with the number density and thermodynamic scalar curvature, we give the interaction potential among the molecules of thermodynamically stable SAdS black holes and analyze its effectiveness. Moreover, we derive the thermo-correction to the equation of state for such black holes that arises from interactions among black-hole molecules using virial coefficients.  相似文献   

18.
We extend all known black-hole no-hair theorems to space-times endowed with a positive cosmological constant Lambda. Specifically, we prove that static spherical black holes with Lambda > 0 cannot support scalar fields in convex potentials and Proca-massive vector fields in the region between the black hole and the cosmic horizon. We also demonstrate the existence of at least one type of quantum hair, and of exactly one charged solution for the Abelian Higgs model. Our method of proof can be applied to investigate other types of quantum or topological hair on black holes in the presence of a positive Lambda.  相似文献   

19.
We present measurements of branching fractions and charge asymmetries for seven B-meson decays with an eta, eta', or omega meson in the final state. The data sample corresponds to 89x10(6) BB pairs produced from e(+)e(-) annihilation at the Upsilon(4S) resonance. We measure the following branching fractions in units of 10(-6): B(B+-->eta pi(+))=5.3+/-1.0+/-0.3, B(B+-->eta K+)=3.4+/-0.8+/-0.2, B(B0-->eta K0)=2.9+/-1.0+/-0.2 (<5.2, 90% C.L.), B(B+-->eta(')pi(+))=2.7+/-1.2+/-0.3 (<4.5, 90% C.L.), B(B+-->omega pi(+))=5.5+/-0.9+/-0.5, B(B+-->omega K+)=4.8+/-0.8+/-0.4, and B(B0-->omega K0)=5.9(+1.6)(-1.3)+/-0.5. The charge asymmetries are A(ch)(B+-->eta pi(+))=-0.44+/-0.18+/-0.01, A(ch)(B+-->eta K+)=-0.52+/-0.24+/-0.01, A(ch)(B+-->omega pi(+))=0.03+/-0.16+/-0.01, and A(ch)(B+-->omega K+)=-0.09+/-0.17+/-0.01.  相似文献   

20.
We perform the first fully nonlinear numerical simulations of black-hole binaries with mass ratios 100∶1. Our technique is based on the moving puncture formalism with a new gauge condition and an optimal choice of the mesh refinement. The evolutions start with a small nonspinning black hole just outside the ISCO that orbits twice before plunging. We compute the gravitational radiation, as well as the final remnant parameters, and find close agreement with perturbative estimates. We briefly discuss the relevance of these simulations for Advanced LIGO, third-generation ground-based detectors, LISA observations, and self-force computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号