首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Sensory systems present environmental information to central nervous system as sequences of action potentials or spikes. How do animals recognize these sequences carrying information about their world? We present a biologically inspired neural circuit designed to enable spike pattern recognition. This circuit is capable of training itself on a given interspike interval (ISI) sequence and is then able to respond to presentations of the same sequence. The essential ingredients of the recognition circuit are (a) a tunable time delay circuit, (b) a spike selection unit, and (c) a tuning mechanism using spike timing dependent plasticity of inhibitory synapses. We have investigated this circuit using Hodgkin-Huxley neuron models connected by realistic excitatory and inhibitory synapses. It is robust in the presence of noise represented as jitter in the spike times of the ISI sequence.  相似文献   

2.
丁炯  张宏  童勤业  陈琢 《中国物理 B》2014,23(2):20501-020501
How neuronal spike trains encode external information is a hot topic in neurodynamics studies.In this paper,we investigate the dynamical states of the Hodgkin–Huxley neuron under periodic forcing.Depending on the parameters of the stimulus,the neuron exhibits periodic,quasiperiodic and chaotic spike trains.In order to analyze these spike trains quantitatively,we use the phase return map to describe the dynamical behavior on a one-dimensional(1D)map.According to the monotonicity or discontinuous point of the 1D map,the spike trains are transformed into symbolic sequences by implementing a coarse-grained algorithm—symbolic dynamics.Based on the ordering rules of symbolic dynamics,the parameters of the external stimulus can be measured in high resolution with finite length symbolic sequences.A reasonable explanation for why the nervous system can discriminate or cognize the small change of the external signals in a short time is also presented.  相似文献   

3.
For a feedforward loop of oscillatory Hodgkin-Huxley neurons interacting via excitatory chemical synapses, we show that a great variety of spatiotemporal periodic firing patterns can be encoded by properly chosen communication delays and synaptic weights, which contributes to the concept of temporal coding by spikes. These patterns can be obtained by a modulation of the multiple coexisting stable in-phase synchronized states or traveling waves propagating along or against the direction of coupling. We derive explicit conditions for the network parameters allowing us to achieve a desired pattern. Interestingly, whereas the delays directly affect the time differences between spikes of interacting neurons, the synaptic weights control the phase differences. Our results show that already such a simple neural circuit may unfold an impressive spike coding capability.  相似文献   

4.
张素花  展永  于慧  安海龙  赵同军 《中国物理》2006,15(10):2450-2457
It has been proved recently that the spike timing can play an important role in information transmission, so in this paper we develop a network with N-unit FitzHugh--Nagumo neurons coupled by gap junctions and discuss the dependence of the spike timing precision on synaptic coupling strength, the noise intensity and the size of the neuron ensemble. The calculated results show that the spike timing precision decreases as the noise intensity increases; and the ensemble spike timing precision increases with coupling strength increasing. The electric synapse coupling has a more important effect on the spike timing precision than the chemical synapse coupling.  相似文献   

5.
Phase‐change memory (PCM) is a promising candidate as an artificial synapse. A compact operation method to implement synaptic functions with low power consumption is critical for constructing large‐scale neuromorphic system. Here we propose a square spike strategy for implementing spike‐timing‐dependent plasticity (STDP) in PCM. Based on the heat accumulation effect in PCM, modulating the time intervals of pre‐ and post‐spikes results in different heat generation and dissipation conditions, which lead to various crystalline/ amorphous ratios in the phase change material layer in devices with diverse synaptic weights. Four forms of STDP learning rule are experimentally demonstrated. This study will further promote the development of PCM technology involved in neuromorphic systems. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.  相似文献   

7.
8.
The paper considers an excitable Hodgkin-Huxley system subjected to a strong periodic forcing in the presence of random noise. The influence of the forcing frequency on the response of the system is examined in the realm of suprathreshold amplitudes. Our results confirm that the presence of noise has a detrimental effect on the neuronal response. Fluctuations can induce significant delays in the detection of an external signal. We demonstrate, however, that this negative influence may be minimized by a resonant activation effect: Both the mean escape time and its standard deviation exhibit a minimum as functions of the forcing frequency. The destructive influence of noise on the interspike interval can also be reduced. With driving signals in a certain frequency range, the system can show stable periodic spiking even for relatively large noise intensities. Outside this frequency range, noise of similar intensity destroys the regularity of the spike trains by suppressing the generation of some of the spikes.  相似文献   

9.
张宏  丁炯  童勤业  程千流 《物理学报》2015,64(18):188701-188701
神经信息系统实质上是定量系统, 应引起足够重视. 关于神经系统的定量研究方面的报道比较少见. 这一问题将会影响进一步的研究, 如双耳声音定向. 双耳定向是定量测量, 用定性分析的方法无法满足要求. 已有的生理实验发现声音输入信号强度与听觉神经的输出频率存在单调递增关系, 所以本文中声音强度的变化被简化成神经脉冲频率的变化. 本文基于圆映射和符号动力学原理, 建立了神经回路定量模型, 模型中对同侧输入回路采用兴奋性耦合, 对侧输入回路采用抑制性耦合, 并考虑神经元间突触连接的量子释放特征, 采用化学耦合模型实现连接, 用耦合系数表示神经元间的耦合程度. 采用Hodgkin-Huxley模型仿真研究听觉神经回路的输入/输出脉冲序列关系. 在已经仿真过的参数范围, 模型在输入信号变化与输出脉冲频率变化间存在单调递增/递减的关系. 对于单输入单输出的神经元, 采用符号动力学方法进行符号化; 对于多输入单输出的神经元, 采用分析各输出脉冲的产生时间, 判断其变化位置, 从神经脉冲序列中得到对应的两耳声音幅值差变化, 以此定位声源. 随着输出脉冲数的增加, 符号序列的长度增加, 符号序列对输入信号变化敏感, 能够得到较高的测量精度. 仿真结果表明这个模型是定量的, 神经脉冲序列能够区分信号的大小.  相似文献   

10.
In this paper,we propose a method for the projective synchronization between two different chaotic systems with variable time delays.Using active control approach,the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor.Based on the Lyapunov stability theory,the sufficient condition for the projective synchronization is calculated theoretically.Numerical simulations of the projective synchronization between Mackey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.  相似文献   

11.
We present a study of time-delay effects on a two-actor conflict model based on nonlinear differential equations. The state of each actor depends on its own state in isolation, its previous state, its inertia to change, the positive or negative feedback and a time delay in the state of the other actor. We use both theoretical and numerical approaches to characterize the evolution of the system for several values of time delays. We find that, under particular conditions, a time delay leads to the appearance of oscillations in the states of the actors. Besides, phase portraits for the trajectories are presented to illustrate the evolution of the system for different time delays. Finally, we discuss our results in the context of social conflict models.  相似文献   

12.
The biselective spin echo technique allows the signals of coupled proton pairs to be extracted from crowded liquid state proton NMR spectra. Its use as a preparation sequence in heteronuclear chemical shift correlation experiments requires the removal of the heteronuclear coupling interaction during the biselective echo time. The discrimination between coupled and uncoupled protons signals is achieved by double quantum filtration, which delivers antiphase magnetization states. The latter are not directly compatible with the design of an HSQC-like pulse sequence. The conversion of antiphase to in-phase magnetization states by a second biselective echo sequence solves this problem. The optimization of spin echo delays is also discussed. Lastly, the article presents modified HSQC and HMBC pulses sequences in which information is obtained solely for the biselectively selected proton pairs. A peracetylated trisaccharide was used as a test molecule.  相似文献   

13.
Neuronal networks are characterized by highly heterogeneous connectivity, and this disorder was recently related experimentally to qualitative properties of the network. The motivation of this paper is to mathematically analyze the role of these disordered connectivities on the large-scale properties of neuronal networks. To this end, we analyze here large-scale limit behaviors of neural networks including, for biological relevance, multiple populations, random connectivities and interaction delays. Due to the randomness of the connectivity, usual mean-field methods (e.g. coupling) cannot be applied, but, similarly to studies developed for spin glasses, we will show that the sequences of empirical measures satisfy a large deviation principle, and converge towards a self-consistent non-Markovian process. From a mathematical viewpoint, the proof differs from previous works in that we are working in infinite-dimensional spaces (interaction delays) and consider multiple cell types. The limit obtained formally characterizes the macroscopic behavior of the network. We propose a dynamical systems approach in order to address the qualitative nature of the solutions of these very complex equations, and apply this methodology to three instances in order to show how non-centered coefficients, interaction delays and multiple populations networks are affected by disorder levels. We identify a number of phase transitions in such systems upon changes in delays, connectivity patterns and dispersion, and particularly focus on the emergence of non-equilibrium states involving synchronized oscillations.  相似文献   

14.
According to a theorem of Takens [Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1981), Vol. 898], dynamical state information can be reproduced from a time series of amplitude measurements. In this paper we investigate whether the same information can be reproduced from interspike interval (ISI) measurements. Assuming an integrate-and-fire model coupling the dynamical system to the spike train, there is a one-to-one correspondence between the system states and interspike interval vectors of sufficiently large dimension. The correspondence implies in particular that a data series of interspike intervals, formed in this manner, can be forecast from past history. This capability is demonstrated using a nonlinear prediction algorithm, and is found to be robust to noise. A set of interspike intervals measured from a simple neuronal circuit is studied for deterministic structure using a prediction error statistic. (c) 1995 American Institute of Physics.  相似文献   

15.
We study the dynamical states of a small-world network of recurrently coupled excitable neurons, through both numerical and analytical methods. The dynamics of this system depend mostly on both the number of long-range connections or "shortcuts", and the delay associated with neuronal interactions. We find that persistent activity emerges at low density of shortcuts, and that the system undergoes a transition to failure as their density reaches a critical value. The state of persistent activity below this transition consists of multiple stable periodic attractors, whose number increases at least as fast as the number of neurons in the network. At large shortcut density and for long enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure times follow a stretched exponential distribution. We show that this functional form arises for the ensemble-averaged activity if the failure time for each individual network realization is exponentially distributed.  相似文献   

16.
We study the effect of delays on the dynamics of large networks of neurons. We show that delays give rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and regimes of multistability. We study the existence and the stability of the various dynamical patterns analytically and numerically in a simplified rate model as a function of the interaction parameters. The results derived in that framework allow us to understand the origin of the diversity of dynamical states observed in large networks of spiking neurons.  相似文献   

17.
Citrate detection and quantitation with proton spectroscopic methods are of current interest as potential tools in the diagnosis and staging of prostate cancer. Thestimulatedechoacquisitionmode (STEAM) sequence is a commonly used volume-localization method for detecting citrate signal. Since the1H citrate resonance at clinically available field strengths arises from a strongly coupled two-spin system, the 90° RF pulses and localizing gradients used in STEAM sequences result in a complicated dependence of signal intensity on timing intervals and gradient amplitudes. The density-matrix formalism has been applied to arrive at a general solution to this problem. Citrate-signal properties at 1.5 T for different gradient localization schemes are examined with the solution. Optimal interpulse delays, deleterious gradient balances, zero-quantum oscillations with mixing time, and a low-frequency, large-amplitude oscillation with echo time are identified for signals acquired with the standard disposition of gradients in STEAM. The generality of the solution also allows for an examination of nonstandard gradient disposition schemes for enhancing citrate signal and for quantifying the sensitivity of such approaches to both field inhomogeneities and off-resonance effects.  相似文献   

18.
The paper describes two-dimensional solid state NMR experiments that use powdered dephased antiphase coherence (γ preparation) to encode chemical shifts in the indirect dimension. Both components of this chemical shift encoded gamma-prepared states can be refocused into inphase coherence by a recoupling element. This helps to achieve sensitivity enhancement in 2D NMR experiments by quadrature detection. The powder dependence of the gamma-prepared states allows for manipulating them by suitable insertion of delays in the recoupling periods. This helps to design experiments that suppress diagonal peaks in 2D spectra, leading to improved resolution. We describe some new phase modulated heteronuclear and homonuclear recoupling pulse sequences that simplify the implementation of the described experiments based on γ prepared states. Recoupling in the heteronuclear spin system is achieved by matching the difference in the amplitude of the sine/cosine modulated phase on the two rf-channels to the spinning frequency while maintaining the same power on the two rf-channels.  相似文献   

19.
A neuron, the fundamental element of neural systems, interacts with other neurons, often producing very complicated behavior. To analyze, model, or predict such complicated behavior, it is important to understand how neurons are connected as well as how they behave. In this paper, we propose two measures, the spike time metric coefficient and the partial spike time metric coefficient, to estimate the network structure, that is, the topological connectivity between neurons. The proposed measures are based on the spike time metric and partialization analysis. To check the validity, we applied the proposed measures to asynchronous spike sequences that are produced by a mathematical neural network model. It was found that the proposed measure has high performance for estimating the network structures even though the structures have a complex topology such as a small-world structure or a scale-free structure.  相似文献   

20.
The use of time reversal pulse sequences to obtain multiple quantum spectra of molecules in thermotropic liquid crystalline phases is described. Several studies have already demonstrated that in order to obtain multiple quantum coherence of high order in polycrystalline solids, it is necessary to utilize pulse trains that produce a preparation propagator that is the adjoint of the mixing propagator. Such pulse sequences produce multiple quantum powder spectra that are pure absortive, thus avoiding destructive phase interference that would occur if standard multiple quantum pulse sequences were used. However even in cases where all single quantum transitions are well-resolved, standard multiple quantum pulse sequences yield multiple quantum spectra of low signal-to-noise because single quantum coherent states are projected out of phase. Sensitivity may be improved by projecting the full two dimensional transform, but this may not be practical in cases involving moderately large numbers of strongly coupled spin one-half nuclei. If the time reversal sequences are used however single quantum coherent states are projected in phase and the full two dimensional transform need not be calculated. The pure absorption double quantum spectrum of oriented benzene has been obtained using time reversal pulse trains and demonstrates a considerable increase in sensitivity over standard methods. Practical aspects of applying multiple pulse sequences to thermotropic systems are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号