首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Electronic structure, especially the Fermi surface, is calculated for the intermetallic rare-earth compound LaAg, known to show the structural phase transition when In is substituted for Ag, by a self-consistent fully-relativistic APW method with the exchange-correlation potential in a local-density approximation. The Fermi surface is found to consist of large hole and electron sheets as well as small hole and electron sheets. This result confirms well the theoretical prediction by Niksch et al. (1987). These Fermi surface sheets are found to explain the experimental results for the de Haas-van Alphen effect by Niksch et al. (1987) and Motoki et al. (1995) reasonably well. But, the frequency branches originating from the large hole sheet have been observed only partially. Local curvature of the large hole sheet is investigated as a possible origin of the disappearance of these frequency branches.  相似文献   

2.
We report angle-resolved photoelectron spectroscopy results of the Fermi surface of Ca1.5Sr0.5RuO4, which is at the boundary of magnetic/orbital instability in the phase diagram of the Ca-substituted Sr ruthenates. Three t(2g) energy bands and the corresponding Fermi surface sheets are observed, which are also present in the Ca-free Sr2RuO4. We find that while the Fermi surface topology of the alpha,beta (d(yz,zx)) sheets remains almost the same in these two materials, the gamma (d(xy)) sheet exhibits a holelike Fermi surface in Ca1.5Sr0.5RuO4 in contrast to being electronlike in Sr2RuO4. Our observation of all three volume conserving Fermi surface sheets clearly demonstrates the absence of orbital-selective Mott transition, which was proposed theoretically to explain the unusual transport and magnetic properties in Ca1.5Sr0.5RuO4.  相似文献   

3.
Semirelativistic self-consistent calculations of the electronic structure of MoSi2 are performed within the framework of the linearized augmented-plane-wave (APW) method in the local density functional approximation. The results of investigations of the band structure, the Fermi surface, and electrical characteristics (effective cyclotron masses, the conductivity anisotropy constant, the mean free path, and the coefficient γ of the heat capacity component linear in temperature) are reported. The Fermi surface consists of two sheets, namely, an electron sheet and a hole sheet. The extreme sectional areas of the Fermi surface agree well with the experimental data on the de Haas-van Alphen effect. The results of first-principles calculations need no additional correction.  相似文献   

4.
The de Haas-van Alphen effect has been used to study the extremal areas and effective cyclotron masses on all five sheets of the Fermi surface of rhodium for the magnetic field in a (110)-plane. The measured extremal areas are in good agreement with relativistic-augmented-plane-wave calculations. The resulting deviations correspond to energy shifts of the calculated bands not exceeding 4 mRy. Several extremal orbits on the fifth band Γ-centered electron sheet have been observed. The mass enhancement determined from the ratio between the calculated and measured effective cyclotron masses is found to vary substantially over the different sheets of the Fermi surface. A rather isotropie factor of 1.40 is obtained for the sixth band Γ-centered electron sheet. For the third and fourth band hole pockets we obtained enhancement factors in the region 0.9–1.4.  相似文献   

5.
We report measurements of the de Haas-van Alphen effect in CeIn(3) in magnetic fields extending to approximately 90 T, well above the Néel critical field of mu(0)H(c) approximately 61 T. The unreconstructed Fermi surface a sheet is observed in the high magnetic field polarized paramagnetic limit, but with its effective mass and Fermi surface volume strongly reduced in size compared to that observed in the low magnetic field paramagnetic regime under pressure. The spheroidal topology of this sheet provides an ideal realization of the transformation from a "large Fermi surface" accommodating f electrons to a "small Fermi surface" when the f-electron moments become polarized.  相似文献   

6.
The Fermi surface of PrNi5 has been studied by the measurements of the de Haas-van Alphen (dHvA) effect at temperatures between 0.3 and in magnetic fields up to 12 T. Two dHvA frequencies have been obtained. The electronic structure of PrNi5 was calculated using the full potential linearized augmented plane wave method. Five sheets of the Fermi surface and the multiple extremal cross sections were determined. First and second sheet have a hole-like structure. The agreement between theory and experiment is obtained by a small downward shift ( 0.1 eV) of the Fermi energy which is probably due to an underestimation of the role of 4 f electrons. Received 9 May 2000 and Received in final form 20 September 2000  相似文献   

7.
T. Greber  M. Corso  J. Osterwalder 《Surface science》2009,603(10-12):1373-1377
Single sheets of hexagonal boron nitride on transition metals provide a model system for single layer dielectrics. The progress in the understanding of h-BN layers on transition metals of the last 10 years is shortly reviewed. Particular emphasis lies on the boron nitride nanomesh on Rh(1 1 1), which is a corrugated single sheet of h-BN, where the corrugation imposes strong lateral electric fields. Fermi surface maps of h-BN/Rh(1 1 1) and Rh(1 1 1) are compared. A h-BN layer on Rh(1 1 1) introduces no new bands at the Fermi energy, which is expected for an insulator. The lateral electric fields of h-BN nanomesh violate the conservation law for parallel momentum in photoemission and smear out the momentum distribution curves on the Fermi surface.  相似文献   

8.
We report measurements of the temperature dependence of both in-plane and out-of-plane penetration depths (lambda(a) and lambda(c), respectively) in 2H-NbSe2. Measurements were made with a radio-frequency tunnel diode oscillator circuit at temperatures down to 100 mK. Analysis of the anisotropic superfluid density shows that a reduced energy gap is located on one or more of the quasi-two-dimensional Nb Fermi surface sheets rather than on the Se sheet, in contrast with some previous reports. This result suggests that the gap structure is not simply related to the weak electron-phonon coupling on the Se sheet and is therefore important for microscopic models of anisotropic superconductivity in this compound.  相似文献   

9.
乔文涛  龚健  张利伟  王勤  王国东  廉书鹏  陈鹏辉  孟威威 《物理学报》2015,64(23):237301-237301
理论上研究了介质/石墨烯/介质梳状波导结构中表面等离子体的传播性质. 波导中表面等离子体模的有效折射率随着石墨烯费米能级的提高而减小, 随着介质折射率的增加而增加. 分析和仿真结果表明, 基于这种梳状波导可以在中红外波段实现新型的纳米等离子体滤波器, 器件的尺度在几百纳米的范围. 通过改变梳状分支的长度, 石墨烯的费米能级, 介质的折射率和波导中石墨烯的层数, 很容易来调节带隙的位置. 另外, 滤波带隙的宽度随着梳状分支数的增加而增加. 这种滤波性质将在可调的高集成光子滤波器件中具有潜在的应用.  相似文献   

10.
We analyze the effect of magnetic breakdown on the resistance of layered organic conductors with a multisheet Fermi surface consisting of a cylinder and two slightly corrugated planes along the projection of the momentum onto the normal to the layers. Analytic expressions are derived for the charge carrier distribution function, and the dependences of the interlayer and intralayer conductivities on the magnitude and orientation of the external magnetic field in the immediate vicinity of a topological phase transition are determined when the distance between the different sheets of the Fermi surface is quite small, but the topological structure of the Fermi surface is still intact.  相似文献   

11.
A new scheme for analyzing the de Haas van Alphen (dHvA) effect in nearly two dimensional (2D) metals (i.e. with nearly cylindrical Fermi surface) is presented. The envelope of the magnetic susceptibility oscillations is calculated in the entire range of magnetic fields and temperatures. The resulting envelope function is found to be proportional to a universal function of the dimensionless parameter Q=hωc/k B T. The upper (i.e. paramagnetic) branch of the susceptibility envelope has a maximum at a certain Q = 5.45. This universal value may be useful for determining the effective cyclotron mass and the Fermi energy of nearly 2D metals. A simple relation between magnetization oscillations amplitude and calculated susceptibility amplitudes is derived. The corresponding limiting formulae for the magnetization oscillations envelope are found to match smoothly around the value X = 2π2/Q?2 of the Lifshitz-Kosevich (LK) smearing parameter. The influence of Fermi surface sheets with open orbits on magneto-quantum oscillations is considered. Triangle-like rather than saw-tooth-like oscillations at ultralow temperatures are obtained and substantially diminished magnetization and susceptibility amplitudes are calculated. This suggests the possibility of estimating the band structure parameters of Fermi surface sheets from magneto-quantum oscillations measurements.  相似文献   

12.
Ma D  Lu Z  Ju W  Tang Y 《J Phys Condens Matter》2012,24(14):145501
BN sheets with absorbed transition metal (TM) single atoms, including Fe, Co, and Ni, and their dimers have been investigated by using a first-principles method within the generalized gradient approximation. All of the TM atoms studied are found to be chemically adsorbed on BN sheets. Upon adsorption, the binding energies of the Fe and Co single atoms are modest and almost independent of the adsorption sites, indicating the high mobility of the adatoms and isolated particles to be easily formed on the surface. However, Ni atoms are found to bind tightly to BN sheets and may adopt a layer-by-layer growth mode. The Fe, Co, and Ni dimers tend to lie (nearly) perpendicular to the BN plane. Due to the wide band gap of the pure BN sheet, the electronic structures of the BN sheets with TM adatoms are determined primarily by the distribution of TM electronic states around the Fermi level. Very interesting spin gapless semiconductors or half-metals can be obtained in the studied systems. The magnetism of the TM atoms is preserved well on the BN sheet, very close to that of the corresponding free atoms and often weakly dependent on the adsorption sites. The present results indicate that BN sheets with adsorbed TM atoms have potential applications in fields such as spintronics and magnetic data storage due to the special spin-polarized electronic structures and magnetic properties they possess.  相似文献   

13.
In this paper, we present a brief review on our angle-resolved photoemission measurements on the band structure, Fermi surface, and superconducting gap of the newly-discovered FeAs-based high temperature superconductors. (1) The Fermi surface of the FeAs-based compounds are characterized by the hole-like Fermi surface sheets near Γ (0, 0) and the existence of singular Fermi spots near M(π,  相似文献   

14.
Electrostatic charge causes sheets to misfeed from the input stacks in inkjet and laser printers. Conductive layers within sheets that suppress discharges and reduce particulate contamination also aggravate sheet sticking. The surface potential of sheet media is a direct measure of the charge in the buried conducting layer. Our experiments find that the times characterizing the voltage transients range from 10 to 1000 s for conductive layers with sheet resistivities in the range from 10+9 to 10+11 Ω/□. Our models predict that charge flowing in the conducting layer increases the electrostatic sticking force. Model predictions are in agreement with our experimental measurements.  相似文献   

15.
In this paper we provide theoretical LDA + DMFT support of recent angle-resolved photoemission spectroscopy (ARPES) observation of the so-called hidden hole-like band and corresponding hidden Fermi surface sheet near Γ-point in the K0.62Fe1.7Se2 compound. To some extent, this is a solution to the long-standing riddle of Fermi surface absence around Γ-point in the KxFe2–ySe2 class of iron chalcogenide superconductors. In accordance with the experimental data, Fermi surface was found near the Γ-point within LDA + DMFT calculations. Based on the LDA + DMFT analysis in this paper it is shown that the largest of the experimental Fermi surface sheets is actually formed by a hybrid Fe-3d ( xy, xz, yz )quasiparticle band. It is also shown that the Fermi surface is not a simple circle as DFT-LDA predicts, but has (according to the LDA + DMFT) a more complicated “propeller”-like structure due to correlations and multiorbital nature of the KxFe2–ySe2 materials. While the smallest experimental Fermi surface around Γ-point is in some sense fictitious, since it is formed by the summation of the intensities of the spectral function associated with “propeller” loupes and is not connected to any of quasiparticle bands.  相似文献   

16.
Satellite and rocket observations have revealed a host of auroral plasma processes, including large dc perpendicular electric fields (E?) associated with electrostatic shocks, relatively weak parallel electric fields (E?) associated with double layers, upflowing ions in the form of beams and conics, downflowing and upflowing accelerated electron beams, several wave modes such as the electrostatic ion-cyclotron (EIC), lower hybrid (LH), very low frequency (VLF), extremely low frequency (ELF), and high-frequency waves and associated nonlinear phenomena. Recently, we have attempted to simulate the various processes using a two-dimensional particle-in-cell code in which the plasma is driven by current sheets of a finite thickness. Striking similarities between the observed auroral plasma processes and those seen in the simulations are found. In this paper we give a review of the plasma processes dealing with dc and ac electric fields, formation of ion beams and conics, and electron acceleration. Electrostatic shock-type electric fields (E?e) occur near the current sheet edges. Such fields arise because of the contact between the high-and low-density plasmas inside and outside the sheet, respectively. Double layers having upward electric fields form inside the sheet and they are distinguishable from the large perpendicular electric fields (E?e) only in wide sheets with thicknesses l >> ?i, the ion Larmor radius. Double layers with a reverse polarity form outside the sheet where downward currents flow. The most energetic ions are found to have pitch angles near 90°, implying a large perpendicular acceleration of the ions.  相似文献   

17.
徐永顺  别少伟  江建军  徐海兵  万东  周杰 《物理学报》2014,63(20):205202-205202
设计和制备了含螺旋单元频率选择表面吸波片的三层复合吸波体,上层和下层均为磁性吸波片,中间层为带缺口的螺旋单元频率选择表面.复合吸波体在总厚度分别为1.4,1.7和2.0 mm时,其反射率在-10d B以下的频带宽度分别达到了9.29,6.69和7.11 GHz,与不含有频率选择表面的吸波体相比较(其他参数相同),-10d B以下反射率带宽分别提高了159.5%,69.3%和129.4%,复合吸波体在总厚度低于吸波体时,也取得了更好的反射效果.带缺口圆螺旋单元的频率选择表面嵌入吸波体中,引入了额外的吸收频带,拓宽了吸波体的反射率频带宽度.仿真分析表明嵌入频率选择表面能够改善吸波体的阻抗匹配性,进而影响其反射率.  相似文献   

18.
Galvanomagnetic phenomena in organic conductors with a quasi-two-dimensional energy spectrum of an arbitrary form in the presence of several groups of charge carriers whose states belong to Fermi surface sheets with different topological structures are considered. The dependences of magnetoresistance, Shubnikov-de Haas oscillations, and Hall field on the intensity and orientation of a strong magnetic field with respect to the normal to layers n are analyzed for a Fermi surface consisting of a weakly corrugated cylinder and a plane weakly corrugated along the p z=pn plane.  相似文献   

19.
《Composite Interfaces》2013,20(1):13-24
Layered composite structures can be generated in metallic sheets by roll bonding of dissimilar metals/alloys. In this investigation, heat treatable (Al(Cu)) and non-heat treatable (Al(Si)) aluminium alloys are roll bonded in sheet form. Large hardness differences between layers poses significant bonding challenges in the form of multiple necking within the hard Al(Cu) layers. For successful processing, it is vital to choose the candidate materials in a state of marginal hardness differences during rolling, but being capable of altering properties through subsequent heat treatments. Atomic diffusion takes place during heat treatment of the composite sheet and results in gradual hardness variation across sheet thickness. The Al(Cu) layers contribute to strength, whereas the Al(Si) layers provide protection from corrosion/wear-related degradation in the newly developed hybrid sheet. The overall mechanical properties of the heat-treated composite fall between the base alloys. The bonding interfaces are noted as the potential spots for initiating failure.  相似文献   

20.
Theoretical calculations focused on the stability of an infinite hexagonal AlN (h-AlN)sheet and its structural and electronic properties were carried out within the frameworkof DFT at the GGA-PBE level of theory. For the simulations, an h-AlN sheet model systemconsisting in 96 atoms per super-cell has been adopted. For h-AlN, we predict an Al-N bondlength of 1.82 Å and an indirect gap of 2.81 eV as well as a cohesive energy which is by6% lower than that of the bulk (wurtzite) AlN which can be seen as a qualitativeindication for synthesizability of individual h-AlN sheets. Besides the study of a perfecth-AlN sheet, also the most typical defects, namely, vacancies, anti-site defects andimpurities were also explored. The formation energies for these defects were calculatedtogether with the total density of states and the corresponding projected states were alsoevaluated. The charge density in the region of the defects was also addressed.Energetically, the anti-site defects are the most costly, while the impurity defects arethe most favorable, especially so for the defects arising from Si impurities. Defects suchas nitrogen vacancies and Si impurities lead to a breaking of the planar shape of theh-AlN sheet and in some cases to the formation of new bonds. The defects significantlychange the band structure in the vicinity of the Fermi level in comparison to the bandstructure of the perfect h-AlN which can be used for deliberately tailoring the electronicproperties of individual h-AlN sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号