首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the Josephson effect in the superconductor/diffusive half metal/superconductor junctions by using the recursive Green function method. In the presence of spin-flip scatterings at the interface, odd-frequency spin-triplet Cooper pairs penetrate deeply into a half metal and carry Josephson current. The critical Josephson current increases with decreasing temperatures near the transition temperature. At low temperatures, however, the critical current decreases with decreasing temperatures. Such reentrant behavior is unusual in the case of s-wave superconductor junctions. The penetration of odd-frequency pairs modifies quasiparticle density of states in a half metal near the Fermi energy, which is responsible for the nonmonotonic temperature dependence of critical Josephson current.  相似文献   

2.
We discuss the dynamic response of odd-frequency Cooper pairs to an electromagnetic field. By using the quasiclassical Green function method, we calculate the impedance (Z=R-iX) of a normal-metal thin film which covers a superconductor. In contrast with the standard relation (i.e., R?X), the impedance in spin-triplet proximity structures shows anomalous behavior (i.e., R>X) in the low frequency limit. This unusual relation is a result of the penetration of odd-frequency pairs into the normal metal and reflects the negative Cooper pair density.  相似文献   

3.
We study the stationary Josephson effect in a ballistic superconductor/ferromagnet/superconductor junction for arbitrarily large spin polarizations. Due to the exchange interaction in the ferromagnet, the Andreev reflection is incomplete. We describe how this effect modifies the Josephson current in the crossover from a superconductor/normal metal/superconductor junction to a superconductor/half metal/superconductor junction.  相似文献   

4.
We propose a novel experiment to identify the symmetry of superconductivity on the basis of theoretical results for differential conductance of a normal metal connected to a superconductor. The proximity effect from the superconductor modifies the conductance of the remote current depending remarkably on the pairing symmetry: spin singlet or spin triplet. The clear-cut difference in the conductance is explained by symmetry of Cooper pairs in a normal metal with respect to frequency. In the spin-triplet case, the anomalous transport is realized due to an odd-frequency symmetry of Cooper pairs.  相似文献   

5.
We investigate the Josephson coupling between two singlet superconductors separated by a half-metallic magnet. The mechanism behind the coupling is provided by the rotation of the quasiparticle spin in the superconductor during reflection events at the interface with the half metal. Spin rotation induces triplet correlations in the superconductor which, in the presence of surface spin-flip scattering, results in an indirect Josephson effect between the superconductors. We present a theory appropriate for studying this phenomenon and calculate physical properties for a superconductor/half-metal/superconductor heterostructure.  相似文献   

6.
Using the quasiclassical Green's function formalism, we study the induced odd-frequency pairing states in ballistic normal metal-superconductor (N/S) junctions where a superconductor has even-frequency symmetry in the bulk and a normal metal layer has an arbitrary length. We show that the concept of the odd-frequency pairing state plays an important role to interpret a McMillan-Rowell bound state in the normal metal.  相似文献   

7.
The Bogoliubov de Gennes equation is applied to the study ofcoherence effects in the ferromagnetic superconductor/insulator/normalmetal/insulator/ferromagnetic/superconductor (FS/I/N/I/FS) junction. We calculated the Josephson current in FS/I/N/I/FS as a function of exchange field in ferromagnetic superconductor, temperature, and normal metal thickness. It is found that the Josephson critical current in FS/I/N/I/FS exhibits oscillations as a function of the length of normal metal. The exchange field always suppresses the Josephson critical current Ip for a parallel configuration of the magnetic moments of two ferromagnetic superconductor (FS) electrodes. In the antiparallel configuration, the Josephson critical current IAp at the minimum values of oscillation increases with the exchange field for strong barrier strength and at low temperatures.  相似文献   

8.
The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature T_C, the ferromagnetic resonance field at X-band(~9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.  相似文献   

9.
李晓薇 《中国物理》2007,16(11):3514-3519
The dc Josephson effect in superconductor / insulator / normal metal / insulator/ferromagnetic superconductor junctions has been studied. We calculate the de Josephson current based on the Bogoliubov de Gennes equation. The Josephson current is derived as a function of exchange field in ferromagnetic superconductor, normal metal thickness and insulating barrier strength. It is found that there exists an oscillation relation between the critical Josephson current and the normal metal thickness. The oscillation amplitude decreases as the thickness of the normal metal increases or the exchange field augments.[第一段]  相似文献   

10.
于扬 《物理》2005,34(8):578-582
超导体中的电子结成库珀对,凝聚到可以用一个宏观波函数来描绘的能量基态,该波函数的位相是代表了成百万库珀对集体运动的宏观变量.以约瑟夫森结为基础元件的超导约瑟夫森器件,使人们能够控制并测量一个超导体的位相和库珀对数目,因此是研究宏观量子现象的理想系统.文章回顾了约瑟夫森器件中的宏观量子现象研究的发展历程,介绍了当前超导约瑟夫森器件在量子计算中的重要应用,并对它们的未来作了简要的展望.  相似文献   

11.
The Josephson effect in p-wave superconductor/diffusive normal metal/p-wave superconductor junctions is studied theoretically. Amplitudes of Josephson currents are several orders of magnitude larger than those in s-wave junctions. Current-phase (J-phi) relations in low temperatures are close to those in ballistic junctions such as J proportional to sin(phi/2) and J proportional to phi even in the presence of random impurity potentials. A cooperative effect between the midgap Andreev resonant states and the proximity effect causes such anomalous properties and is a character of the spin-triplet superconductor junctions.  相似文献   

12.
Recent progress in the understanding of multiband superconductivity and its relationship to odd-frequency pairing are reviewed herein. The discussion begins by reviewing the emergence of odd-frequency pairing in a simple two-band model, providing a brief pedagogical overview of the formalism. Several examples of multiband superconducting systems are examined, in each case describing both the origin of the band degree of freedom and the nature of the odd-frequency pairing. Throughout, it is attempted to convey a unified picture of how odd-frequency pairing emerges in these materials and propose that similar mechanisms are responsible for odd-frequency pairing in several analogous systems: layered 2D heterostructures, double quantum dots, double nanowires, Josephson junctions, and systems described by isolated valleys in momentum space. In addition, experimental probes of odd-frequency pairing in multiband systems are reviewed, focusing on hybridization gaps in the electronic density of states, paramagnetic Meissner effect, and Kerr effect.  相似文献   

13.
s波超导体绝缘层dx2-y2波超导体结的直流Josephson电流   总被引:2,自引:0,他引:2       下载免费PDF全文
李晓薇  董正超  崔元顺 《物理学报》2002,51(6):1360-1365
在s波超导体绝缘层dx2-y2波超导体结(sId)中,考虑到结界面粗糙散射,运用BogoliubovdeGennes(BdG)方程和FurusakiTsukada(FT)电流公式,计算超导结中的准粒子传输系数和直流Josephson电流.结果表明:sId超导结的直流Josephson电流随温度以及结两侧的相位差变化的关系曲线强烈地依赖于d波超导体的晶轴方位;结界面的粗糙散射对Josephson电流有抑制作用 关键词: s/I/d超导结 dx2-y2波超导体 直流Josephson电流  相似文献   

14.
The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p) junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface. The phase dependence of the Josephson current I (φ) between s-wave and px-wave superconductor is predicted to be sin(2φ). The ferromagnet scattering effect, the barrier strength, and the roughness strength at interface suppress the dc currents in s/FI/p junction.  相似文献   

15.
李晓薇 《物理学报》2006,55(12):6637-6642
由Bogoliubov-de Gennes方程得到铁磁超导共存态(FS)的自洽方程,利用推广的Furusaki-Tsukada的电流公式计算了铁磁超导态/绝缘层/自旋三重态p波超导体(FS/I/p)结的直流Josephson电流随结的温度、相位差以及FS中磁交换能、结界面的势垒散射强度的变化关系.研究表明:FS中磁交换能、结界面的势垒散射均抑制FS/I/p结的直流Josephson电流.当自旋三重态超导体具有px波配对势时,自旋三重态超导体结的直流Josephson电流随结两侧相位差的振荡周期是π. 关键词: 铁磁超导态 自旋三重态超导体 p波超导体 直流Josephson电流  相似文献   

16.
金霞  董正超  梁志鹏  仲崇贵 《物理学报》2013,62(4):47401-047401
通过求解磁性d波超导中的能隙和磁交换能的自洽方程, 研究磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森电流. 计算结果表明: 1)临界电流随中间的铁磁层厚度呈现出两种不同周期的振荡混合, 通过增强铁磁层中的磁交换能q0和铁磁/磁性d波超导界面处的势垒强度z0, 短周期分量可从长周期中分离出来, 反之, 通过降低q0z0, 长周期分量可从短周期中分离出来; 2)在两边磁性d波超导的磁化方向取平行时, 在取一些特定的铁磁层厚度下, 磁性d波超导中的磁交换能可增强系统的临界电流. 关键词: 磁性d波超导体 铁磁体 约瑟夫森电流  相似文献   

17.
The BTK theory is extended to investigate spin–triplet current and differential conductance spectrum in the half metal/conical helimagnet (Holmium)/s-wave superconductor heterojunctions. We show that the effective spin–split and spin–flip scatterings of the Holmium layer control the conversion efficiency between the spin–singlet and equal-spin triplet pair correlations, leading to a tunneling current oscillation with the thickness of the Holmium layer. This can provide qualitative explanations on the current oscillation in Ho/Co/Ho-based Josephson junction experiment. The differential conductance spectrum confirms spin–flip Andreev reflection induced long-ranged equal-spin triplet pair correlations.  相似文献   

18.
We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity if m is an even number. As a result, in a conventional vortex with m = 1, the local density of states at the Fermi energy has a maximum (minimum) at the center of the vortex core in an even (odd)-frequency superconductor. In the vortex lattice of s-wave superconductor, we find that only odd-frequency pairing is present at the core centers, while at the midpoint of the vortex lines, only even-frequency pairing exists. Thus, the odd and even-frequency pairings also form the lattice in the vortex lattice state. We also propose a scanning tunneling microscope experiment using a superconducting tip to explore odd-frequency superconductivity.  相似文献   

19.
We present a general theory of the proximity effect in junctions between diffusive normal metals (DN) and superconductors. Various possible symmetry classes in a superconductor are considered: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity state. It is shown that the pair amplitude in a DN belongs, respectively, to an ESE, OTE, OTE, and ESE pairing state since only the even-parity s-wave pairing is possible due to the impurity scattering.  相似文献   

20.
Solving the Bogoliubov-de Gennes equation, the energy levels of bound states are obtained in the ferromagnetic superconductor. The Josephson currents in a ferromagnetic superconductor/Insulator/d-wave superconductor junction are calculated as a function of the exchange field, temperature, and insulating barrier strength. It is found that the Josephson critical current is always suppressed by the presence of exchange field h and depends on crystalline axis orientation of d-wave superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号