首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We clarify the significance of quasiprobability (QP) in quantum mechanics that is relevant in describing physical quantities associated with a transition process. Our basic quantity is Aharonov’s weak value, from which the QP can be defined up to a certain ambiguity parameterized by a complex number. Unlike the conventional probability, the QP allows us to treat two noncommuting observables consistently, and this is utilized to embed the QP in Bohmian mechanics such that its equivalence to quantum mechanics becomes more transparent. We also show that, with the help of the QP, Bohmian mechanics can be recognized as an ontological model with a certain type of contextuality.  相似文献   

2.
We study experimentally the critical depinning current I(c) versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition temperature T(c) we observe matching of the vortex lattice with the QP pinning array, confirming essential features in the I(c)(B) patterns as predicted by Misko et al. [Phys. Rev. Lett. 95, 177007 (2005)]. We find a significant enhancement in I(c)(B) for QP pinning arrays in comparison to I(c) in samples with randomly distributed antidots or no antidots.  相似文献   

3.
We show that the self-consistent solution of the complex Dyson equation for the electron-phonon (EP) problem introduces many body effects which are often observed in photoemission experiments. The formalism is applied to the H covered W(110) surface, using first-principles results for the electronic and vibrational structure. We demonstrate that the measured spin-polarized surface band splitting [Phys. Rev. Lett. 84, 2925 (2000)10.1103/PhysRevLett.84.2925; 89, 216802 (2002)] can be traced back to different quasiparticle (QP) states induced by EP coupling. Despite the breakdown of the single QP picture, the spectral functions are very well represented by the predicted multiple QP structure.  相似文献   

4.
The bounded rationality mainstream is based on interesting experiments showing human behaviors violating classical probability (CP) laws. Quantum probability (QP) has been shown to successfully figure out such issues, supporting the hypothesis that quantum mechanics is the central fundamental pillar for brain function and cognition emergence. We discuss the decision-making model (DMM), a paradigmatic instance of criticality, which deals with bounded rationality issues in a similar way as QP, generating choices that cannot be accounted by CP. We define this approach as criticality-induced bounded rationality (CIBR). For some aspects, CIBR is even more satisfactory than QP. Our work may contribute to considering criticality as another possible fundamental pillar in order to improve the understanding of cognition and of quantum mechanics as well.  相似文献   

5.
We performed high-resolution angle-resolved photoemission spectroscopy on Nd1.87Ce0.13CuO4, which is located at the boundary of the antiferromagnetic (AF) and the superconducting phase. We observed that the quasiparticle (QP) effective mass around (pi,0) is strongly enhanced due to the opening of the AF gap. The QP mass and the AF gap are found to be anisotropic, with the largest value near the intersecting point of the Fermi surface and the AF zone boundary. In addition, we observed that the QP peak disappears around the Néel temperature (TN) while the AF pseudogap is gradually filled up at much higher temperatures, possibly due to the short-range AF correlation.  相似文献   

6.
We prove that the general scheme for physical theories that we have called semantic realism(SR) in some previous papers copes successfully with a number of EPR-like paradoxes when applied to quantum physics (QP). In particular, we consider the old arguments by Furry and Bohm- Aharonov and show that they are not valid within a SR framework. Moreover, we consider the Bell-Kochen-Specker und the Bell theorems that should prove that QP is inherently contextual and nonlocal, respectively, and show that they can be invalidated in the SR approach. This removes the seeming contradiction between the basic assumptions of SR and QP, and proves that some problematic features that are usually attributed to QP, us contextuality and nonlocality, occur because of the adoption of a verificationist position, from one side, and from an insufficient adherence to the operational principles that have inspired QP itself, from the other side.  相似文献   

7.
We study the critical depinning current Jc versus the applied magnetic flux Phi, for quasiperiodic (QP) chains and 2D arrays of pinning centers placed on the nodes of a fivefold Penrose lattice. In QP chains, the peaks in Jc(Phi) are determined by a sequence of harmonics of the long and short segments of the chain. The critical current Jc(Phi) has a remarkable self-similarity. In 2D QP pinning arrays, we predict analytically and numerically the main features of Jc(Phi), and demonstrate that the Penrose lattice of pinning sites provides an enormous enhancement of Jc(Phi), even compared to triangular and random pinning site arrays. This huge increase in Jc(Phi) could be useful for applications.  相似文献   

8.
If and how an isolated quantum system thermalizes despite its unitary time evolution is a long‐standing, open problem of many‐body physics. The eigenstate thermalization hypothesis (ETH) postulates that thermalization happens at the level of individual eigenstates of a system's Hamiltonian. However, the ETH requires stringent conditions to be validated, and it does not address how the thermal state is reached dynamically from an initial non‐equilibrium state. We consider a Bose‐Einstein condensate (BEC) trapped in a double‐well potential with an initial population imbalance. We find that the system thermalizes although the initial conditions violate the ETH requirements. We identify three dynamical regimes. After an initial regime of undamped Josephson oscillations, the subsystem of incoherent excitations or quasiparticles (QP) becomes strongly coupled to the BEC subsystem by means of a dynamically generated, parametric resonance. When the energy stored in the QP system reaches its maximum, the number of QPs becomes effectively constant, and the system enters a quasi‐hydrodynamic regime where the two subsystems are weakly coupled. In this final regime the BEC acts as a grand‐canonical heat reservoir for the QP system (and vice versa), resulting in thermalization. We term this mechanism dynamical bath generation (DBG).  相似文献   

9.
The standard interpretation of quantum physics (QP) and some recent generalizations of this theory rest on the adoption of a rerificationist theory of truth and meaning, while most proposals for modifying and interpreting QP in a realistic way attribute an ontological status to theoretical physical entities (ontological realism). Both terms of this dichotomy are criticizable, and many quantum paradoxes can be attributed to it. We discuss a new viewpoint in this paper (semantic realism, or briefly SR), which applies both to classical physics (CP) and to QP. and is characterized by the attempt of giving up verificationism without adopting ontological realism. As a first step, we construct a formalized observative language L endowed with a correspondence truth theory. Then, we state a set of axioms by means of L which hold both in CP and in QP. and construct a further language Lv which can express bothtestable andtheoretical properties of a given physical system. The concepts ofmeaning andtestability do not collapse in L and Le hence we can distinguish between semantic and pragmatic compatibility of physical properties and define the concepts of testability and conjoint testability of statements of L and Le. In this context a new metatheoretical principle (MGP) is stated, which limits the validity of empirical physical laws. By applying SR (in particular. MGP) to QP, one can interpret quantum logic as a theory of testability in QP, show that QP is semantically incomplete, and invalidate the widespread claim that contextuality is unavoidable in QP. Furthermore. SR introduces some changes in the conventional interpretation of ideal measurements and Heisenbergs uncertainty principle.  相似文献   

10.
Lightly doped La2-xSrxCuO4 in the so-called "insulating" spin-glass phase has been studied by angle-resolved photoemission spectroscopy. We have observed that a "quasiparticle" (QP) peak crosses the Fermi level in the node direction of the d-wave superconducting gap, forming an "arc" of Fermi surface, which explains the metallic behavior at high temperatures of the lightly doped materials. The QP spectral weight of the arc smoothly increases with hole doping, which we attribute to the n approximately x behavior of the carrier number in the underdoped and lightly doped regions.  相似文献   

11.
An approach to quantum physics (QP) is proposed that is characterized by the attempt to give up the verificationist theory of truth underlying the standard interpretation of QP. As a first step, anobservatively minimal language L is constructed that is endowed with a Tarskian truth theory. Then, a set of axioms is stated by means of L that hold both in classical physics and in QP, and the further language Le of all properties is constructed. The concepts ofmeaning andtestability do not collapse in L and Le, hence quantum logic is interpreted as a theory of testability in QP, and QP turns out to be semantically incomplete. Furthermore, semantic and pragmatic compatibility of physical properties are distinguished in Le, and the concepts of testability and conjoint testability of statements are introduced. In this context some known quantum paradoxes can be avoided, and a new general principle (MGP) characterizes the truth mode of empirical physical laws. MGP invalidates the Bell theorem and, presumably, the Bell-Kochen-Specker theorem, and introduces apragmatic contextuality in QP in place of thesemantic contextuality that should occur because of these theorems.  相似文献   

12.
A novel picture of the quasiparticle (QP) gap in prototype semiconductors Si and Ge emerges from an analysis based on all-electron, self-consistent, GW calculations. The deep-core electrons are shown to play a key role via the exchange diagram-if this effect is neglected, Si becomes a semimetal. Contrary to current lore, the Ge 3d semicore states (e.g., their polarization) have no impact on the GW gap. Self-consistency improves the calculated gaps-a first clear-cut success story for the Baym-Kadanoff method in the study of real-materials spectroscopy; it also has a significant impact on the QP lifetimes. Our results embody a new paradigm for ab initio QP theory.  相似文献   

13.
Properties of hybrid stars in an extended MIT bag model   总被引:1,自引:0,他引:1  
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(p) decreases with baryon density p; this decrement makes the strange quark matter become more energetically favorable than ever, which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii.  相似文献   

14.
We use Hanbury-Brown-Twiss interferometry (HBTI) to study various quantum phases of hard core bosons (HCBs) and ideal fermions confined in a one-dimensional quasi-periodic (QP) potential. For HCBs, the QP potential induces a cascade of Mott-like band-insulator phases in the extended regime, in addition to the Mott insulator, Bose glass, and superfluid phases. At critical filling factors, the appearance of these insulating phases is heralded by a peak to dip transition in the interferogram, which reflects the fermionic aspect of HCBs. On the other hand, ideal fermions in the extended phase display various complexities of incommensurate structures such as devil’s staircases and Arnold tongues. In the localized phase, the HCB and the fermion correlations are identical except for the sign of the peaks. Finally, we demonstrate that HBTI provides an effective method to distinguish Mott and glassy phases.  相似文献   

15.
The epistemological position underlying thestandard interpretation of quantum physics (QP) can beclassified as a form of verificationism: to be precise,empirical verificationism (nontestable physical statements have no meaning). This position canbe criticized and maintained to be the deep root of manyquantum paradoxes. Semantic Realism proposes analternative viewpoint, according to which evennontestable statements made up of individually testablestatements have a meaning, but quantum laws are notnecessarily true in physical contexts that QP itselfclassifies as nonaccessible. This viewpoint produces a new interpretation of QP which preserves itsformal structure and observational interpretation, butinvalidates those theorems that aim to prove suchpuzzling features of this theory as nonlocality and contextuality (Bell and Bell-Kochen-Speckertheorems).  相似文献   

16.
The temperature of the quasiprojectile (QP) emerging from binary collisions of the light Ar + Al system at 65 MeV/nucleon is studied theoretically in the framework of the Landau-Vlasov dynamical model. The slope parameter of a charged-particle kinetic-energy spectrum, calculated in the forward-hemisphere of the QP reference frame, is taken as the apparent temperature. The apparent temperature associated to the true QP emission displays a weak dependence on the impact parameter and the hottest primary QPs are formed at intermediate values of b. Received: 28 April 2000 / Accepted: 27 October 2000  相似文献   

17.
利用遗传算法设计可见光波段全能反射器   总被引:1,自引:1,他引:0  
介绍了遗传算法在设计宽频带全能反射器中的应用.设计的关键是通过遗传算法寻找到不同一维准周期光子晶体间的最佳组合方式以及光学厚度以便形成一个光子晶体异质结.利用传输矩阵法分析了一维准周期系统中的电磁传输特性.计算结果表明,准周期光子晶体的全方向反射带宽受晶胞单元以及周期数的影响.根据这些规律,用遗传算法成功地优化了光子晶体异质结的结构并得到两种适用于可见光波段的高性能全能反射器.例如结构为(HLLHL)13(HL)13( LHL)15 [注: nL=1.46,nH=2.6,dL=0.218λ0/nL且dH=0.201λ0/nH]的反射器在可见光波段内的全方向反射带宽达到了88.42% (446 nm~779 nm).  相似文献   

18.
19.
The theory of scanning tunneling spectroscopy of low-energy quasiparticle (QP) states in vortex lattices of d-wave superconductors is developed taking account of the effects caused by an extremely large extension of QP wavefunctions in the nodal directions and the band structure in the QP spectrum. The oscillatory structures in STM spectra, which correspond to van Hove singularities, are analyzed. Theoretical calculations carried out for finite temperatures and scattering rates are compared with recent experimental data for high-T c cuprates.  相似文献   

20.
The spall tests under the plane tensile pulses for resistance spot weld(RSW) of QP980 steel are performed by using a gun system.The velocity histories of free surfaces of the RSW are measured with the laser velocity interferometer system for any reflector.The recovered specimens are investigated with an Olympus GX71 metallographic microscope and a scanning electron microscope(SEM).The measured velocity histories are explained and used to evaluate the tension stresses in the RSW applying the characteristic theory and the assumption of Gathers.The spall strength(1977-2784 MPa) of the RSW for QP980 steel is determined based on the measured and simulated velocity histories.The spall mechanism of the RSW is brittle fracture in view of the SEM investigation of the recovered specimen.The micrographs of the as-received QP980 steel,the initial and recovered RSW of this steel for the spall test are compared to reveal the microstructure evolution during the welding and spall process.It is indicated that during the welding thermal cycle,the local martensitic phase transformation is dependent on the location within the fusion zone and the heat affected zone.It is presented that the transformation at high strain rate may be cancelled by other phenomenon while the evolution of weld defects is obvious during the spall process.It may be the stress triaxiality and strain rate effect of the RSW strength or the dynamic load-carrying capacity of the RSW structure that the spall strength of the RSW for QP980 steel is much higher than the uniaxial compression yield strength(1200 MPa) of the martensite phase in QP980 steel.Due to the weld defects in the center of the RSW,the spall strength of the RSW should be less than the conventional spall strength or the dynamic load-carrying capacity of condensed structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号