首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clique percolation in random networks   总被引:2,自引:0,他引:2  
The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdos-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an edge reaches the threshold p(c) (k) = [(k - 1)N](-1/(k - 1)). At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We discuss why clique percolation is a novel and efficient approach to the identification of overlapping communities in large real networks.  相似文献   

2.
In the present paper, the site-percolation problem corresponding to linear k-mers (containing k identical units, each one occupying a lattice site) on a simple cubic lattice has been studied. The k-mers were irreversibly and isotropically deposited into the lattice. Then, the percolation threshold and critical exponents were obtained by numerical simulations and finite-size scaling theory. The results, obtained for k ranging from 1 to 100, revealed that (i) the percolation threshold exhibits a decreasing function when it is plotted as a function of the k-mer size; and (ii) the phase transition occurring in the system belongs to the standard 3D percolation universality class regardless of the value of k considered.  相似文献   

3.
The Hamiltonian dynamics of a particle moving in a nearly periodic two-dimensional (2-D) potential of square symmetry is analyzed. The particle undergoes two types of unbounded stochastic or random walks in such a system: a quasi-1-D motion (a "stochastic channeling") and a 2-D motion which results from a sort of stochastic percolation. A scenario for the onset of this stochastic percolation is analyzed. The threshold energy for percolation is found as a function of the perturbation parameter. Each type of random walk has the property of intermittency. The particle transport is anomalous in certain energy intervals.  相似文献   

4.
《Physica A》1988,154(1):34-60
The asymptotic dynamics of the percolation model for a bond disordered lattice is studied. The velocity autocorrelation function (VACF) is investigated for arbitrary concentration of disorder in two and three dimensions using an effective medium approximation (EMA). Corrections to the long time tails away from the percolation threshold and to the percolation tails at the threshold are calculated. A characteristic time scale for the long time tails is identified and found to diverge at the threshold. Sufficiently close to the threshold the two types of asymptotic dynamics can be identified clearly for times greater than and less than this characteristic time, respectively. An approximate scaling of the EMA equation is obtained near the threshold for investigation of the crossover region. More generally, the EMA equation is solved numerically for arbitrary concentration in two dimensions to exhibit the complete time dependence of the VACF in all domains near and far from the threshold.  相似文献   

5.
Within a recently introduced model based on the bond-fluctuation dynamics, we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors giving , in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long-time tail which is well fitted by a stretched exponential decay. Received 20 December 1999 and Received in final form 18 February 2000  相似文献   

6.
We measure the dynamical arrest transition in a model, thermoreversible, adhesive hard sphere dispersion. At low volume fractions ?, below the critical point, gelation occurs within the gas-liquid phase boundary. For ? slightly below and above the critical concentration, the phase boundary follows the predicted percolation transition. At high ?, it melds into the predicted attractive-driven glass transition. Our results demonstrate that for ? above ~20% physical gelation is an extension of the attractive-driven glass line and occurs without competition for macroscopic phase separation.  相似文献   

7.
The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider quenching experiments, where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki spinexchange dynamics. Analyzing the distributionn l(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.  相似文献   

8.
We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree k. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if nonoptimal) that partitions the graph into essentially equal sized connected components (clusters), the system undergoes a percolation phase transition at f = fc = 1-2/k where f is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find S approximately N 0.4 where S is the size of the clusters and l approximately N 0.25 where l is their diameter. Also, we find that S undergoes multiple nonpercolation transitions for f相似文献   

9.
We present numerical results on the distribution of forces in the central-force percolation model at threshold in two dimensions. We conjecture a relation between the multifractal spectrum of scalar and vector percolation that we test for central-foce percolation. This relation is in excellent agreement with our numerical data.  相似文献   

10.
We present a numerical study of the spin-1/2 bilayer Heisenberg antiferromagnet with random interlayer dimer dilution. From the temperature dependence of the uniform susceptibility and a scaling analysis of the spin correlation length we deduce the ground state phase diagram as a function of nonmagnetic impurity concentration p and bilayer coupling g. At the site percolation threshold, there exists a multicritical point at small but nonzero bilayer coupling g(m)=0.15(3). The magnetic properties of the single-layer material La(2)Cu(1-p)(Zn,Mg)(p)O4 near the percolation threshold appear to be controlled by the proximity to this new quantum critical point.  相似文献   

11.
Measurements of the IV characteristics of site-diluted Josephson-junction arrays have revealed intriguing effects of percolative disorder on the phase transition and the vortex dynamics in a two-dimensional XY system. Different from other types of phase transitions, the Kosterlitz-Thouless transition was eliminated with the introduction of percolative disorder far below the percolation threshold. Even after the Kosterlitz-Thouless order had been removed, the system remained superconducting at low temperatures by establishing a different type of order. Near the percolation threshold, evidence was found that, as a consequence of the underlying fractal structure, the critical dynamics of the phase degrees of freedom persisted down to zero temperature.  相似文献   

12.
We connect the Phillips constraint theory of glass formation to numerical simulations of vector percolation with nearest neighbor central forces. Feng and Sen have shown that the addition of bond-bending forces shifts the vector percolation threshold to the scalar value in two dimensions. Using constraint theory we show that in the mean-field approximation for d > 2 the correct non-central vector threshold lies between the scalar and central vector thresholds. For a fully equilibrated statically disordered network mean-field theory may be almost exact.  相似文献   

13.
We investigate the spin dynamics of SrCr(9p)Ga(12-9p)O19 for p below and above the percolation threshold p(c) using muon spin relaxation. Our major findings are as follows: (i) At T-->0 the relaxation rate is T independent and approximately p(3), (ii) the slowing down of spin fluctuation is activated with an energy U, which is also a linear function of p(3) and lim U as p-->0 = 8 K; this energy scale could stem only from a single ion anisotropy, and (iii) the p dependence of the dynamical properties is identical below and above p(c), indicating that they are controlled by local excitation.  相似文献   

14.
We present a bidomain threshold model of intracellular calcium (Ca2+) dynamics in which, as suggested by recent experiments, the cytosolic threshold for Ca2+ liberation is modulated by the Ca2+ concentration in the releasing compartment. We explicitly construct stationary fronts and determine their stability using an Evans function approach. Our results show that a biologically motivated choice of a dynamic threshold, as opposed to a constant threshold, can pin stationary fronts that would otherwise be unstable. This illustrates a novel mechanism to stabilise pinned interfaces in continuous excitable systems. Our framework also allows us to compute travelling pulse solutions in closed form and systematically probe the wave speed as a function of physiologically important parameters. We find that the existence of travelling wave solutions depends on the time scale of the threshold dynamics, and that facilitating release by lowering the cytosolic threshold increases the wave speed. The construction of the Evans function for a travelling pulse shows that of the co-existing fast and slow solutions the slow one is always unstable.  相似文献   

15.
We develop a theoretical approach to percolation in random clustered networks. We find that, although clustering in scale-free networks can strongly affect some percolation properties, such as the size and the resilience of the giant connected component, it cannot restore a finite percolation threshold. In turn, this implies the absence of an epidemic threshold in this class of networks, thus extending this result to a wide variety of real scale-free networks which shows a high level of transitivity. Our findings are in good agreement with numerical simulations.  相似文献   

16.
Free radical co-polymerization of methyl methacrylate (MMA) and ethyl glycol dimethyl metacrylate (EGDMA) was investigated in solution at different molar ratios R = [EGDMA]/[MMA] between 0 and 0.05. Initially mainly linear PMMA was formed with weight average molar mass 7.5 g/mol independent of R. At larger reaction extents branched polymers were formed and the systems gelled. The scattering intensity rose initially with the reaction extent, but reached a plateau value at larger reaction extents. The plateau value increased strongly with R. Dynamic light scattering showed the appearance of a slow relaxation not observed in linear PMMA solutions. The data can be interpreted by assuming that the excess scattering originates from the branching points and relaxes through self diffusion of the branched particles. The results agree with predictions of the percolation model for gelation and Rouse dynamics. Viscosity measurements corroborate this interpretation. Measurements on a progressively diluted sample quenched close to the gel point again showed quantitative agreement with the percolation model for gelation. Received 11 May 1998 and Received in final form 22 October 1998  相似文献   

17.
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature a nontrivial dependence on the wave vector which is very different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall rearrangements of the heterogeneous structure produce the relaxation process.  相似文献   

18.
We report the effect of field, temperature and thermal history on the time dependence in resistivity and magnetization in the phase separated state of Al doped Pr(0.5)Ca(0.5)MnO(3). The rate of time dependence in resistivity is much higher than that of magnetization and it exhibits a different cooling field dependence due to percolation effects. Our analysis shows that the time dependence in physical properties depends on the phase transition dynamics, which can be effectively tuned by variation of temperature, cooling field and metastable phase fraction. The phase transition dynamics can be broadly divided into the arrested and unarrested regimes, and in the arrested regime this dynamics is mainly determined by time taken in the growth of critical nuclei. An increase in cooling field and/or temperature shifts this dynamics from the arrested to unarrested regime, and in this regime, this dynamics is determined by the thermodynamically allowed rate of formation of critical nuclei, which in turn depends on the cooling field and available metastable phase fraction. At a given temperature, a decrease in metastable phase fraction shifts the crossover from arrested to unarrested regimes towards lower cooling field. It is rather significant that in spite of the metastable phase fraction calculated from resistivity being somewhat off that of magnetization, their cooling field dependence exhibits a striking similarity, which indicates that the dynamics in arrested and unarrested regimes are so different that it comes out vividly provided that the measurements are performed around the percolation threshold.  相似文献   

19.
Summary We have performed extensive studies of a three-component microemulsion system composed of AOT-water-decane (AOT=sodium-bis-ethylhexyl-sulfosuccinate is an ionic surfactant) using small-angle light scattering (SALS). The small-angle scattering intensities are measured in the angular interval 0.001–0.1 radians, corresponding to a Bragg wave number range of 0.14 μm−1<Q<<1.4 μm−1. The measurements were made by changing temperature and volume fraction ϕ of the dispersed phase (water + AOT) in the range 0.05<ϕ<0.75. All samples have a fixed water-to-AOT molar ratio,w=[water]/[AOT]=40.8, in order to keep the same average droplet size in the stable one-phase region. With the SALS technique, we have been able to observe all the phase boundaries of a very complex phase diagram with a percolation line and many structural organizations within it. We observe at the percolation transition threshold, a scaling behavior of the intensity data. This behavior is a consequence of a clustering among microemulsion droplets near the percolation threshold. In addition, we describe in detail a structural transition from a droplet microemulsion to a bicontinuous one as suggested by a recent small-angle neutron scattering experiment. The loci of this transition are located several degrees above the percolation temperatures and are coincident with the maxima previously observed in shear viscosity. From the data analysis, we show that both the percolation phenomenon and this novel structural transition are derived from a large-scale aggregation between microemulsion droplets.  相似文献   

20.
We report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component k(z) of the incident wave vector of the atom the reflection probability is found to be a function of k(z) only. This behavior is explained by quantum reflection at the attractive branch of the Casimir-van der Waals interaction potential. For larger values of k(z) the overall reflection probability decreases rapidly and is found to also depend on the parallel component k(x) of the wave vector. The material specific k(x) dependence for this classic reflection at the repulsive branch of the potential is discussed in terms of an averaging out of the surface roughness under grazing incidence conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号