首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We analyze coherent two-color photoassociation of a Bose-Einstein condensate, focusing on stimulated Raman adiabatic passage (STIRAP) in free-bound-bound transitions from atoms to molecules. This problem raises an interest because STIRAP has been predicted to be absent in the nondegenerate case [Javanainen and Mackie, Phys. Rev. A 58, R789 (1998)]. Nevertheless, we find that Bose stimulation enhances the free-bound dipole matrix element for an atomic condensate, and photoassociative STIRAP turns out to be a viable mechanism for converting an atomic condensate to a molecular condensate with near-unit efficiency.  相似文献   

2.
张露  严璐瑶  鲍洄含  柴晓茜  马丹丹  吴倩楠  夏凌晨  姚丹  钱静 《物理学报》2017,66(21):213301-213301
基于最近实验工作的结果(2010 Nat.Phys.6 265)即Danzl等在五能级M型级联系统中分别利用连续型和四光子型受激拉曼绝热通道(stimulated Raman adiabatic passage,STIRAP)实现了将Feshbach态上弱束缚的Cs2有效转移到其振转基态,本文理论研究了两种STIRAP方案实施的基本条件,解析推导系统的准暗态、绝热参数的具体形式并分析其存在的必要性,详细讨论布居转移效率对相关参量的依赖关系.通过比较激光脉冲的时序、中间能级的失谐量和自发辐射率、光场脉冲的幅值等诸多参量的不同影响,讨论方案各自的优缺点,找到了参量优化的方法以实现最高效的粒子布居数转移.与前人的实验结果相比,本文研究表明,实验观测值(约0.60)均低于理论预估最佳值(约0.97)的主要原因是受限于激发态能级的自发辐射率过大.该理论方案还可用于制备量子纠缠态,在量子逻辑门操控、量子信息传输等领域都有潜在的应用.  相似文献   

3.
武寄洲  马杰  贾锁堂 《物理》2018,47(3):162-172
超冷分子的理论和实验研究近年来取得了令人瞩目的巨大成就,极大地拓展了原子分子光物理的研究范畴。围绕超冷分子的制备与应用开创了很多全新的研究领域,如超高分辨分子光谱、分子量子态操控、精密测量以及量子模拟等。当前超冷分子的高效密集制备主要采用基于激光冷却的超冷原子缔合技术来实现。文章综述了超冷分子缔合制备的研究现状,阐述了光缔合、Feshbach共振缔合、受激拉曼绝热跃迁以及超短脉冲光缔合产生超冷分子的物理机制与实验进展,对外场操控超冷分子的实验结果及其潜在应用做了概要展示。  相似文献   

4.
鹿博  王大军 《物理学报》2019,68(4):43301-043301
目前对超冷原子的研究已经从最初的原子分子物理扩展到了物理的很多分支.极性分子可以将电偶极相互作用引入到超冷体系,同时分子又与原子类似,可以灵活地被光和其他电磁场操控,因而很多理论工作都预言了超冷极性分子在超冷化学、量子模拟和量子信息等领域会有重要的应用.但由于超冷基态分子的制备非常困难,如何把超冷物理从原子发展到分子还是一个方兴未艾的课题.过去的10年间,各种分子冷却技术都取得了很大突破,本文回顾了这些进展,并着重介绍了基于异核冷原子的磁缔合结合受激拉曼转移这一技术,该技术在制备高密度的基态碱金属超冷极性分子上取得了较大的成功.本文也总结了超冷极性碱金属分子基本碰撞特性研究的一些实验结果.  相似文献   

5.
We have created and trapped a pure sample of Feshbach molecules in a three-dimensional optical lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into molecules. The lattice shields the trapped molecules from collisions and, thus, overcomes the problem of inelastic decay by vibrational quenching. Furthermore, we have developed an advanced purification scheme that removes residual atoms, resulting in a lattice in which individual sites are either empty or filled with a single molecule in the vibrational ground state of the lattice.  相似文献   

6.
We review a theory for coupled many-nonlinear oscillator systems that describes quantum ergodicity and energy flow in molecules. The theory exploits the isomorphism between quantum energy flow in Fock space, that is, vibrational state space, and single-particle quantum transport in disordered solid-state systems. The quantum ergodicity transition in molecules is thereby analogous to the Anderson transition in disordered solids. The theory reviewed here, local random matrix theory (LRMT), describes the nature of the quantum ergodicity transition, statistical properties of vibrational eigenstates, and quantum energy flow through the vibrational states of molecules. Predictions of LRMT have been observed in computational studies of coupled nonlinear oscillator systems, which are summarized here. We also review applications of LRMT to molecular spectroscopy and chemical reaction rate theory, including adoption of LRMT in theories that predict rates of conformational change of molecules taking place at energies corresponding to those below and above the quantum ergodicity transition. A number of specific examples are reviewed, including the application of LRMT to predict (1) dilution factors of IR spectra of organic molecules, (2) rates of conformational change in chemical and photochemical reactions, (3) conformational dynamics of biological molecules in molecular beams, (4) rates of hydrogen bond breaking and rearrangement in clusters of biological molecules and water, and (5) excited state proton transfer reactions in proteins.  相似文献   

7.
We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.  相似文献   

8.
A theoretical investigation on the population transfer in a Λ-type quantum system near a spherical gold nanoparticle under application of two stimulated Raman adiabatic passage (STIRAP) shortcuts and efficiency comparison with conventional STIRAP. It combines the density matrix approach for system dynamics, with classical electromagnetic calculations used to obtain the modified electric field amplitudes of the applied pulses and the Purcell factor of the quantum system due to the presence of the nanoparticle. The efficiency of population transfer is investigated by varying the distance between the quantum system and the nanoparticle, the free-space decay rate of quantum states, the mutual polarization, and the Rabi frequencies of each STIRAP shortcut pulses. In all cases, at least one of the applied shortcuts is more efficient than conventional STIRAP, while in most cases both perform better. When the pump and Stokes fields of the shortcuts have radial and tangential polarizations with respect to the nanoparticle surface, respectively, high transfer efficiency is obtained for small distances of the quantum system to the nanoparticle, moderate free space decay rates and large Rabi frequencies of the fields, while when the pulse polarizations are interchanged, the transfer becomes highly efficient only at large distances.  相似文献   

9.
《中国物理 B》2021,30(5):53701-053701
Inspired by a recent experiment [Phys. Rev. Lett. 122 253201(2019)] that an unprecedented quantum interference was observed in the way of stimulated Raman adiabatic passage(STIRAP) due to the coexisting resonant-and detunedSTIRAPs, we comprehensively study this effect. Our results uncover the scheme robustness towards any external-field fluctuations coming from laser intensity noise and imperfect resonance condition, as well as the persistence of high-contrast interference pattern even when more nearby excited levels are involved. We verify that an auxiliary dynamical phase accumulated in hold time caused by the presence of the quasi-dark state in detuned-STIRAP can sensitively manipulate the visibility and frequency of the interference pattern, representing a new hallmark to measure the hyperfine energy accurately.The robust stability of the scheme comes from the intrinsic superiority embedded in the STIRAP mechanism that preserves the coherence of population transfer, which promises a remarkable performance of quantum interference in a practical implementation.  相似文献   

10.
11.
冯海冉  李鹏  岳现房 《物理学报》2019,68(5):50201-050201
量子速度极限(QSL)的实用性研究关系到更高效量子技术的实现,研究不同分子体系中QSL问题可为基于分子体系的量子信息技术提供理论支持.采用代数方法讨论了不同的初始态对QSL度量方式的影响,研究发现初始态和分子参数均会影响QSL的度量方式,对分子体系无论Fock态还是相干态,量子Fisher信息度量方式优于Wigner-Yanase信息度量方式.广义几何QSL度量更适合描述强相干态下的分子动力学演化.  相似文献   

12.
Coherent population transfer between vibrational levels of the NO molecule induced by the interaction of two delayed laser pulses, also referred to as stimulated Raman scattering involving adiabatic passage (STIRAP), is studied experimentally in a molecular beam and in the bulk. The consequences of hyperfine splitting and Doppler broadening are discussed in detail. Unlike in previous studies of this kind, transfer occurs simultaneously between more than one group of non degenerate levels. In a molecular beam or in the bulk, the transfer efficiency of STIRAP exceeds that obtained by Stimulated Emission Pumping (SEP) by a factor of 3.6 or 15, respectively. We estimate the absolute transfer efficiency T in the beam to be , while is found in the bulk. In both cases, this is of the maximum value expected from numerical studies. Possible reasons for this discrepancy are discussed. Finally we show that the absorption of a pump pulse in a weakly absorbing medium is significantly enhanced by the presence of a copropagating Stokes pulse when the Rabi frequency of the latter is smaller than the width of the Doppler profile . The relation of this observation to the phenomenon of Electromagnetically Induced Transparency (EIT), which is observed for , is also discussed. Received: 11 September 1997 / Revised: 28 October 1997 / Accepted: 29 October 1997  相似文献   

13.
We consider the dynamics of a single electron in a chain of tunnel coupled quantum dots, exploring the formal analogies of this system with some of the laser-driven multilevel atomic or molecular systems studied by Bruce W. Shore and collaborators over the last 30 years. In particular, we describe two regimes for achieving complete coherent transfer of population in such a multistate system. In the first regime, by carefully arranging the coupling strengths, the flow of population between the states of the system can be made periodic in time. In the second regime, by employing a “counterintuitive” sequence of couplings, the coherent population trapping eigenstate of the system can be rotated from the initial to the final desired state, which is an equivalent of the STIRAP technique for atoms or molecules. Our results may be useful in future quantum computation schemes.  相似文献   

14.
用于铯原子受激拉曼绝热输运过程的光源的产生   总被引:1,自引:0,他引:1  
受激拉曼绝热输运(STIRAP)是一种有效制备和控制原子态的技术,在原子操控和量子信息中具有重要意义,最近几年得到广泛关注.研制用于特定原子的拉曼激光是实现该过程的重要一步.研究了利用光纤波导调制器及干涉滤波器等组成的系统实现用于铯原子STIRAP过程的光源的方法.通过直接调制高频光纤调制器获得正负一级边带,并利用两个...  相似文献   

15.
One possible way to produce ultra-cold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultra-cold samples of Cs2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2〉 with the rovibrational ground state |v=0,J=0〉 of the singlet X 1 Σ g + ground-state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2〉 by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0〉.  相似文献   

16.
Using scanning tunneling spectroscopy, we study the transport of electrons through C(60)?molecules on different metal surfaces. When electrons tunnel through a molecule, they may excite molecular vibrations. A fingerprint of these processes is a characteristic sub-structure in the differential conductance spectra of the molecular junction reflecting the onset of vibrational excitation. Although the intensity of these processes is generally weak, they become more important as the resonant character of the transport mechanism increases. The detection of single vibrational levels crucially depends on the energy level alignment and lifetimes of excited states. In the limit of large current densities, resonant electron-vibration coupling leads to an energy accumulation in the molecule, which eventually leads to its decomposition. With our experiments on C(60)?we are able to depict a molecular scale picture of how electrons interact with the vibrational degrees of freedom of single molecules in different transport regimes. This understanding helps in the development of stable molecular devices, which may also carry a switchable functionality.  相似文献   

17.
We consider a resonantly interacting boson-fermion mixture of 40K and 87Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for 40K and 87Rb atoms, and 40K-87Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.  相似文献   

18.
Cold alkali diatomic molecules (LiCs, NaCs) in the lowest vibrational state of the electronic triplet ground state are formed on superfluid helium nanodroplets. Using photoionization detection the excitation spectra of the transitions are recorded. The splitting of the vibrational structure in the LiCs spectrum, not observed in the NaCs spectrum, is interpreted in terms of molecular fine structure. The spectra are well reproduced by a model based on quantum chemistry potential curves including spin-orbit coupling, in combination with an asymmetric line shape function to account for cluster-induced broadening. Our refined potential curves provide important input data for the photoassociation of ultracold dipolar alkali molecules from atomic quantum gases.Received: 1 July 2004, Published online: 26 October 2004PACS: 36.40.Mr Spectroscopy and geometrical structure of clusters - 34.50.Gb Electronic excitation and ionization of molecules; intermediate molecular states (including lifetimes, state mixing, etc.) - 33.20.-t Molecular spectra  相似文献   

19.
The effects of phonons on crystallization and crystal morphology are investigated. It is shown that the commensuration of the lattice vibrations with the lattice will favor certain crystal morphologies. Vibrational effects can also be important for the molecular structure of chain molecules. In this case, the contribution from quantum mode forces to denaturation is estimated by using a simple phenomenological model describing the molecule as a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule, such energy is significant and may contribute to cold denaturing as seen for proteins. This is consistent with the empirical observation that cold denaturation is exothermic and hot denaturation endothermic.  相似文献   

20.
We consider bosonic dipolar molecules in an optical lattice prepared in a mixture of different rotational states. The 1/R(3) interaction between molecules for this system is produced by exchanging a quantum of angular momentum between two molecules. We show that the Mott states of such systems have a large variety of quantum phases characterized by dipolar orderings including a state with an ordering wave vector that can be changed by tilting the lattice. As the Mott insulating phase is melted, we also describe several exotic superfluid phases that will occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号