共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
本文应用x-射线衍射(XRD)、X-射线光电子能谱(XPS)、俄歇电子能谱(AES)、扫描电子显微技术(SEM)研究了钼酸铵在石墨炉内石墨探针表面上的原子化机理。实验结果表明,在温度<1350K时,钼酸铵经历MoO_3和Mo_4O_(11)中间产物转变为MoO_2(s)。在更高温度下,MoO_2(s)首先还原为Mo_2C,而后进一步转变为MoC(s)。MoC再分解为Mo(s)。钼的原子化起源于Mo的升华。 相似文献
5.
6.
利用探针原子化技术,研究了在普通石墨管中锡化合物的原子化过程中所发生的化学反应,阐述了锡的原子化机理。结果表明,锡试样首先转化成为氧化物,氧化物发生石墨碳还原而生成气态原子。 相似文献
7.
综合运用X射线衍射、X射线光电子能谱与俄歇电子能谱等表面分析手段研究了石墨炉中石墨探针表面钐样品的原子化过程。发现在石墨炉升温过程中,钐样品先转化为Sm2O3,再由Sm2O3热分解为SmO,原子化起源于SmO的热分解;在Sm2O3与探针接触的表面有碳化物生成,碳化物是造成记忆效应的重要原因。 相似文献
8.
用X射线衍射、X射线光电子能谱、俄歇电子能谱和扫描电子显微术等考察了石墨炉升温过程中Sr(NO3)2在石墨探针表面上的形态变化,阐明了它的原子化机理.加热过程中Sr(NO3)2首先分解为SrO(s),再还原为SrC2,后者进一步分解为Sr(s).锶的原子化源于金属蒸发. 相似文献
9.
元素在石墨炉内石墨探针表面上的原子化机理研究(ⅩⅣ)—钐的… 总被引:3,自引:0,他引:3
综合运用X射线衍射、X射线光电子能谱与俄歇电子能谱等表面分析手段研究了石墨炉中石墨探针表面钐样品的原子化过程。发现在石墨炉升温过程中,钐样品先转化为Sm2O3,再由Sm2O3热分解为SmO,原子化起源于SmO的热分解;在Sm2O3与探针接触的表面有碳化物生成,碳化物是造成记忆效应的重要原因。 相似文献
10.
石墨炉内石墨探针表面原子化机理的研究:Ⅳ.硝酸铕的原子化机理 总被引:1,自引:0,他引:1
用X-射线衍射分析与X-射线光电子能谱分析研究了硝酸铕在石墨炉内石墨探针表面原子化机理。研究结果表明,在硝酸铕的原子化过程中,Eu(NO3)3先转化Eu2O3,生成的Eu2O3经一系列的晶型转变之后,热分解为EuO(s),后者以EuO(g)形式蒸发进入气相。硝酸铕的原子化起源于EuO(g)的热分解。在1660K和1920K时有铕的碳化物EuC2生成。 相似文献
11.
在石墨炉原子吸收光谱(GFAAS)法中,反应前后的化合物形态可以借助于X射线衍射(XRD)、俄歇电子能谱(AES)及化学分析光电子能谱(ESCA)等现代分析仪器来鉴定,本文综合利用上述分析方法,对锰化合物在石墨探针表面上于不同温度下的化学形态进行鉴定,结合元素的灰化和原子化曲线,详细地研究和阐述了锰的原子化机理。 相似文献
12.
13.
14.
自1978年B.V. L′vov提出石墨炉内探针原子化技术以来,许多作者对该技术进行了研究,并将其应用于实际样品的测定,国内亦有人作过系统的评述,但对元素在石墨探针表面上的原子化机理却报道不多。本文应用X射线衍射分析与其它一些实验,观察和研究了镉和铝在石墨探针表面上原子化过程中的形态变化,阐明了镉和铝的原子化历程。 相似文献
15.
石墨炉内石墨探针表面上的原子化机理研究 III. 铬的原子化机理 总被引:2,自引:0,他引:2
本文利用探针原子化技术, 研究了普通管式石墨炉内石墨探针表面上铬化合物的原子化过程。X射线衍射分析(XRD)、俄歇电子能谱(AES)、化学分析光电子能谱分析(ESCA)与石墨炉原子吸收光谱(GFAAS)测量的综合结果表明, 铬化合物在灰化阶段即可转化为稳定的碳化物, 最后由碳化物的热分解生成气态铬原子。 相似文献
16.
本文利用探针原子化技术, 研究了普通管式石墨炉内石墨探针表面上铬化合物的原子化过程。X射线衍射分析(XRD)、俄歇电子能谱(AES)、化学分析光电子能谱分析(ESCA)与石墨炉原子吸收光谱(GFAAS)测量的综合结果表明, 铬化合物在灰化阶段即可转化为稳定的碳化物, 最后由碳化物的热分解生成气态铬原子。 相似文献
17.
探针原子化石墨炉原子吸收绝对分析法的研究 总被引:1,自引:0,他引:1
本文研究了探针等温原子化技术应用于石墨炉分析中进行绝对分析的可能性,将实验得到的10个元素的特征质量值(m_(oexp))与理论计算值(m_(o(?)al))进行了比较,讨论了原子化温度和Zeeman效应对特征质量的影响。本法的m_(o(?)al/m_(oexp)比值的平均值和标准偏差为0.94士0.10。 相似文献
18.
19.
用X-射线衍射方法研究了氯化金与氯铂酸铵在石墨炉内石墨探针表面上的原子化机理。研究结果表明,AuCl3和(NH4)2PtCl6都是先热分解为金属单质。后者蒸发进入气相。AuCl3和(NH4)PtCl6的原子化都起源于金属单质直接热蒸发。 相似文献