首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
We investigate the relative photo-damage effects during one- and two-photon excitations and demonstrate that there exist fundamental differences in the damage induced by a high repetition rate laser as compared to that of a CW laser. This difference is evident from the degree of enhanced fluorescence intensity achieved by blanking the excitation with an optical chopper. Such an enhancement in fluorescence intensity provides better signal-to-noise ratio that could have immediate applications in multiphoton imaging of live specimens.  相似文献   

2.
Joo C  Kim KH  de Boer JF 《Optics letters》2007,32(6):623-625
We describe simultaneous quantitative phase contrast and multiphoton fluorescence imaging by combined spectral-domain optical coherence phase and multiphoton microscopy. The instrument employs two light sources for efficient optical coherence microscopic and multiphoton imaging and can generate structural and functional images of transparent specimens in the epidirection. Phase contrast imaging exhibits spatial and temporal phase stability in the subnanometer range. We also demonstrate the visualization of actin filaments in a fixed cell specimen, which is confirmed by simultaneous multiphoton fluorescence imaging.  相似文献   

3.
The growing field of ultrafast materials science, aimed at exploring short-lived transient processes in materials on the microsecond to femtosecond timescales, has spawned the development of time-resolved, in situ techniques in electron microscopy capable of capturing these events. This article gives a brief overview of two principal approaches that have emerged in the past decade: the stroboscopic ultrafast electron microscope and the nanosecond-time-resolved single-shot instrument. The high time resolution is garnered through the use of advanced pulsed laser systems and a pump-probe experimental platforms using laser-driven photoemission processes to generate time-correlated electron probe pulses synchronized with laser-driven events in the specimen. Each technique has its advantages and limitations and thus is complementary in terms of the materials systems and processes that they can investigate. The stroboscopic approach can achieve atomic resolution and sub-picosecond time resolution for capturing transient events, though it is limited to highly repeatable (>10(6) cycles) materials processes, e.g., optically driven electronic phase transitions that must reset to the material's ground state within the repetition rate of the femtosecond laser. The single-shot approach can explore irreversible events in materials, but the spatial resolution is limited by electron source brightness and electron-electron interactions at nanosecond temporal resolutions and higher. The first part of the article will explain basic operating principles of the stroboscopic approach and briefly review recent applications of this technique. As the authors have pursued the development of the single-shot approach, the latter part of the review discusses its instrumentation design in detail and presents examples of materials science studies and the near-term instrumentation developments of this technique.  相似文献   

4.
Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characterize dynamical behavior inside materials under illumination with picosecond resolution. Typically pump/probe or similar dynamical measurements require the use of amplified pulses derived from free-space solid state lasers in the $\upmu $ J–mJ range and since interferometric techniques are typically used in pulsed measurements the measurement time of a THz spectrum can last at least tens of minutes. Better systems can be realized based on fiber laser technologies. Here we discuss the advantages of a THz spectrometer driven by an ultrafast Ytterbium doped fiber laser whose repetition rate can be tuned rapidly allowing for rapid dynamical measurements. The efficient gain medium, robust operation and compact design of the system opens up the possibility of exploring rapid detection of various materials as well as studying dynamical behavior using the high brightness source.  相似文献   

5.
Laser-induced fluorescence imaging of hydroxyl radicals has been an important tool in combustion research for more than twenty years. More recently, high frame rate imaging of hydroxyl radicals has been demonstrated using Nd:YAG-pumped dye laser systems. This work describes how a high repetition rate frequency-quadrupled Nd:YLF laser emitting at 263 nm can be used for laser-induced fluorescence imaging of hydroxyl radicals with less complexity. Hydroxyl radicals are excited in the A–X (2,0) band and redshifted fluorescence emission is detected with an image intensified CMOS camera at kHz frame rates. Furthermore, a strategy for high-speed temperature imaging is described.  相似文献   

6.
Hajireza P  Shi W  Zemp RJ 《Optics letters》2011,36(20):4107-4109
In this Letter, the capability of label-free fiber-based optical-resolution photoacoustic microscopy is demonstrated. This real-time imaging system takes advantage of image-guide fibers and a unique fiber laser. The 800?μm image-guide consists of 30,000 individual single-mode fibers in a bundle and the diode-pumped, pulsed Ytterbium fiber laser is utilized to perform up to 600?kHz repetition rate. Phantom studies indicate 7?μm resolution. The proposed setup keeps many of the powerful properties of previous tabletop OR-PAM systems, but also offers a submillimeter probe footprint and high flexibility due to the nature of the image-guide. This system could have significant clinical impact for endoscopic applications where the thin fiber can be inserted into the body.  相似文献   

7.
Murari K  Zhang Y  Li S  Chen Y  Li MJ  Li X 《Optics letters》2011,36(7):1299-1301
We present an all-fiber-optic scanning multiphoton endomicroscope with 1.55 μm excitation without the need for prechirping femtosecond pulses before the endomicroscope. The system consists of a 1.55 μm femtosecond fiber laser, a customized double-clad fiber for light delivery and fluorescence collection, and a piezoelectric scan head. We demonstrate two-photon imaging of cultured cells and mouse tissue, both labeled with indocyanine green. Free-space multiphoton imaging with near-IR emission has previously shown benefits in reduced background fluorescence and lower attenuation for the fluorescence emission. For fiber-optic multiphoton imaging there is the additional advantage of using the soliton effect at the telecommunication wavelengths (1.3-1.6 μm) in fibers, permitting dispersion-compensation-free, small-footprint systems. We expect these advantages will help transition multiphoton endomicroscopy to the clinic.  相似文献   

8.
激光扫描共焦显微术和多光子显微术等新的显微成像技术可以对厚的生物样品实现光学断层成像 ,因而在生物医学诊断领域具有重要的应用前境。在Fried的一维分辨度理论的基础上 ,系统地讨论了运用共焦扫描荧光显微术在进行光学断层成像时 ,其光学断层平面分辨度与信噪比之间的定量关系 ,建立了实际显微成像系统平面测量精度的定量计算方法。所得出的结果对于选择共焦扫描显微成像系统的最佳参数及评价所设计的显微成像系统的性能具有重要的意义。  相似文献   

9.
A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.  相似文献   

10.
相比于传统的光学成像技术,近年来获得快速发展的新型多光子成像技术具有穿透深度大,组织光损伤小,信噪比高,且可方便进行光学层析成像的特点,故而被广泛应用于包括脑、肿瘤、胚胎在内的多种活体组织成像中。本综述回顾了新型多光子成像技术的诞生与发展历程,包括微型化双光子成像技术、双光子内窥技术和三光子成像技术,概括分析了其基本原理与成像特点,讨论了这一领域具有代表性的最新研究成果,重点总结了其在生物学基础研究领域和临床医学诊断中的主要应用,并展望了其未来的应用与发展前景。可以预见,随着激光器和光探测技术的不断进步,多光子成像技术将会得到更大的发展与更加广泛的应用。  相似文献   

11.
理论分析了高阶模抑制型磁绝缘线振荡器(MILO)慢波结构,推导了其各分区电磁场分布.通过对场分布的进一步分析可以发现,角向开槽使得原始MILO结构中的两个简并的HEM11模式去简并,分裂成为极化方向与开槽方向垂直或平行的两个模式;通过改变慢波结构叶片间开槽角向位置相对关系,可以破坏高阶模式之间π模谐振关系,从而抑制高阶模式的起振,使器件稳定工作在基模.  相似文献   

12.
13.
Near-infrared (NIR) fluorescence imaging is an important imaging technology in deep-tissue biomedical imaging and related researches, due to the low absorption and scattering of NIR excitation and/or emission in biological tissues. Laser scanning confocal microscopy (LSCM) plays a significant role in the family of fluorescence microscopy. Due to the introduction of pinhole, it can provide images with optical sectioning, high signal-to-noise ratio and better spatial resolution. In this study, in order to combine the advantages of these two techniques, we set up a fluorescence microscopic imaging system, which can be named as NIR-LSCM. The system was based on a commercially available confocal microscope, utilizing a NIR laser for excitation and a NIR sensitive detector for signal collection. In addition, NIR fluorescent nanoparticles (NPs) were prepared, and utilized for fluorescence imaging of the ear and brain of living mice based on the NIR-LSCM system. The structure of blood vessels at certain depth could be visualized clearly, because of the high-resolution and large-depth imaging capability of NIR-LSCM.  相似文献   

14.
We report a wide-field fluorescence lifetime imaging (FLIM) system that uses a blue picosecond pulsed diode laser as the excitation source. This represents a significant miniaturization and simplification compared with other time-domain FLIM instruments that should accelerate the development of clinical and real-world applications of FLIM. We have demonstrated this instrument in two configurations: a macroimaging setup applied to multiwell plate assays of chemically and biologically interesting fluorophores and a microscope system that has been applied to imaging of tissue sections. The importance of the adjustable repetition rate of this laser source is discussed with respect to noise reduction and precision in the lifetime determination, illustrating a further significant advantage over conventional mode-locked solid-state lasers.  相似文献   

15.
The multiphoton double ionization of Ba from ~280 to 700 nm was investigated using laser pulses 5 ns long of peak intensity ~1010 W/cm2. The spectrum consists of a number of strong resonances, which can be assigned to Ba+ transitions. Most of the assignments have been verified by pump-probe techniques. Thus, the Ba++ observed is due to sequential ionization. The multiphoton ionization probability is highest for λ~500 nm, which matches a series of strong Ba and Ba+ transitions leading to double ionization  相似文献   

16.
Passive Q-switching of Pulsed and CW Nd: YAG Lasers with Cr~(4 ): YAG   总被引:1,自引:1,他引:0  
Passive Q-switching of Pulsed and CW Nd:YAG Lasers with Cr ̄(4+):YAGPassiveQ-switchingofPulsedandCWNd:YAGLaserswithCr ̄(4+):YAG...  相似文献   

17.
Tal E  Oron D  Silberberg Y 《Optics letters》2005,30(13):1686-1688
By introducing spatiotemporal pulse shaping techniques to multiphoton microscopy it is possible to obtain video-rate images with depth resolution similar to point-by-point scanning multiphoton microscopy while mechanically scanning in only one dimension. This is achieved by temporal focusing of the illumination pulse: The pulsed excitation field is compressed as it propagates through the sample, reaching its shortest duration (and highest peak intensity) at the focal plane before stretching again beyond it. This method is applied to produce, in a simple and scalable setup, video-rate two-photon excitation fluorescence images of Drosophila egg chambers with nearly 100,000 effective pixels and 1.5 microm depth resolution.  相似文献   

18.
Multiphoton microscopy has enabled biologists to collect high-resolution images hundreds of microns into biological tissues, including tissues of living animals. While the depth of imaging exceeds that possible from any other form of light microscopy, multiphoton microscopy is nonetheless generally limited to depths of less than a millimeter. Many of the advantages of multiphoton microscopy for deep tissue imaging accrue from the unique nature of multiphoton fluorescence excitation. However, the quadratic relationship between illumination level and fluorescence excitation makes multiphoton microscopy especially susceptible to factors that degrade the illumination focus. Here we examine the effect of spherical aberration on multiphoton microscopy in fixed kidney tissues and in the kidneys of living animals. We find that spherical aberration, as evaluated from axial asymmetry in the point-spread function, can be corrected by adjustment of the correction collar of a water immersion objective lens. Introducing a compensatory positive spherical aberration into the imaging system decreases the depth-dependence of signal levels in images collected from living animals, increasing signal by up to 50%.  相似文献   

19.
We have studied the sound generation with high repetition rate pulsed laser. We have solved the inhomogeneous wave equation for acoustic pressure in a liquid generated by a laser, using Green’s function formalism and convolution technique. To obtain the maximum pressure of the sound waves, we found the conditions on repetition rate and on period of laser pulse of various shapes. Our analysis shows that the sound generated in a liquid with a series of laser pulses is highly affected by the time profile of the pulses besides other parameters, namely laser beam diameter, laser beam optical wavelength, repetition rate and period of laser pulse. This effect is pronounced particularly in frequency domain. We found that the noise of higher harmonics in the generated sound can be greatly removed with the proper choice of the time profile of the laser pulses. It is found that the pressure is generated around the fundamental frequency for the half-sine and rectangular pulses, with the proper choice of repetition rate and period of pulse. The application of the present analysis for underwater communication is pointed out.  相似文献   

20.
We describe a self-starting high-power femtosecond laser based on the Cr(4+):Mg(2)SiO(4) crystal that produces 17-nJ pulses of 40-fs duration at 26.5-MHz repetition rate. This low repetition rate is achieved by employment of a one-to-one telescope in the cavity. The pulse energy is five times greater than with a short-resonator laser. To our knowledge, the laser produces the highest energy ever achieved from this type of laser directly from the resonator without cavity dumping or external amplification. We believe that this laser source can be used for many applications, including nonlinear optics, microscopic imaging, and micromachining of silicon and other semiconductor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号