首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: A novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer was synthesized by a cross‐coupling polycondensation with Pd(PPh3)2Cl2 and a phase‐transfer catalyst, and was confirmed by 1H NMR and IR spectroscopy and elemental analysis. The thermal, electrochemical, and photoluminescent properties of the new copolymer have been investigated. The incorporation of triple bonds into the cyano‐substituted PPV (CN‐PPV) backbone leads to higher oxidation and reduction potentials than poly(2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) and CN‐PPV, potentially making the copolymer a good electron‐transporting material for use in a light‐emitting‐diode device.

The cyclic voltammogram of the novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer synthesized here.  相似文献   


2.
This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.  相似文献   

3.
Both fully conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene‐alt‐9,10‐anthrylene vinylene] [poly(MEHPV‐AV)] and conjugated/nonconjugated block copolymers poly(alkanedioxy‐2‐methoxy‐1,4‐phenylene‐1,2‐ethenylene‐9,10‐anthrylene‐1,2‐ehthenylene‐3‐methoxy‐1,4‐phenylene)[poly(BFMPx‐AV), (x = 4, 8, and 12)] were synthesized by Horner–Emmons reaction utilizing potassium tert‐butoxide. Of these synthesized polymers poly(BFMP4‐AV) and poly(BFMP8‐AV), which has four and six methylene groups as solubility spacer in the main chain exhibited liquid crystalline to isotropic transition in addition to the two first order transitions. Light‐emitting diode (LED)s made from the organic solvent soluble poly(BFMP12‐AV) as emitting layer showed blue shift in the emission spectrum compared to the one made from fully conjugated poly(MEHPV‐AV). Although poly(BFMP12‐AV) had higher barrier to the electron injection from cathode than poly(MEHPV‐AV), the luminance efficiency of LED made from poly(BFMP12‐AV) was about 25 times higher than the one made from poly(MEHPV‐AV), which had fully conjugated structure. LEDs fabricated by both poly(BFMP12‐AV) and poly(MEHPV‐AV) exhibited Stoke's shift in the range of 155 to 168 nm from the absorption maximum due to the excimer formation between the ground and excited state anthracene groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3173–3180, 2000  相似文献   

4.
《Chemical physics letters》1999,291(3-4):173-180
We report the synthesis and characterization of multi-layered organic superlattices made by polyelectrolyte self-assembly. Self-assembled films were formed from a water-soluble form of poly(phenylene vinylene) with high-photoluminescence quantum efficiency (QE). We observed a self-quenching of the luminescence with increasing film thickness. This quenching can be reversed by inserting spacer layers between each active conjugated layer. A red shift of the luminescence was also observed as additional poly(phenylene vinylene) layers were added. We attribute the red shift and increasing QE to changing polymer conformation, together with efficient unidirectional energy transfer. We rule out quantum confinement as the origin of the red shift.  相似文献   

5.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The reaction of bis(4,7-tetrahydrothiopheniomethyl) benzofuran dibromide with aqueous tetramethylammonium hydroxide leads to a water-soluble polyelectrolyte which can be film cast and thermolytically eliminated to give poly(4,7-benzofuran vinylene) (PBFV). Subjection of bis(4,7-tetrahydrothiopheniomethyl) benzothiophene dibromide to the same reaction sequence gives poly(4,7-benzothiophene vinylene) (PBTV). UV-VIS studies show that PBFV has a band gap of 2.76 eV, while PBTV has a band gap of 2.92 eV. These polymers are members of a new class of conjugated poly (arylene vinylene)s, in which heterocyclic pseudoaromatic rings are fused onto a poly(1,4-phenylene vinylene) backbone. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A new p‐phenylene–vinylene–thiophene‐based siloxane block copolymer has been synthesized. The copolymer consists of alternating rigid and flexible blocks. The rigid blocks are composed of phenylene–vinylene–thiophene‐based units, and the flexible blocks are derived from 1,3‐dialkyldisiloxane units. The former component acts as the chromophore, and allows fine tuning of band gap for blue‐light emission, while the latter imparts good solubility of the copolymer in organic solvents, and thus, should enhance processibility of the resulting copolymer. The thermal properties of the copolymer have been characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photoluminescence (PL) of the copolymer in solution and in cast film has been studied. The effects of concentration on the PL intensity of the new copolymer in polymer blends with poly(methyl methacrylate) (PMMA) and poly(vinyl carbazole) (PVK) have also been described. Efficient energy transfer from PVK to the new block copolymer in the blended film was observed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1450–1456, 2000  相似文献   

8.
The highly conjugated aromatic polymers, poly(2,5-dimethoxyphenylene vinylene) and poly(2,5-dimethylphenylene vinylene), were obtained from their water soluble, sulfonium salt precursor polymers. Films of these polymers were reacted with either AsF5 or I2 vapor. Poly(2,5-dimethoxyphenylene vinylene) showed increases in electrical conductivity of up to 14 to 15 orders of magnitude for these two dopants, while an 8 to 9 order of magnitude increase was observed for poly(2,5-dimethylphenylene vinylene) with the same dopants. The synthesis of the precursor polymers, the properties and elimination reactions of films of the precursors, the doping reactions, and the conductivities of the resulting phenylene vinylene films are discussed.  相似文献   

9.
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006  相似文献   

10.
将聚碳酸乙烯撑酯(PVCA)与α,ω-双端氨基聚乙二醇(H2N-PEG-NH2)溶于DMF,于液蜡中进行交联反应制得亲水性固定化酶载体,将其与胰蛋白酶进行偶联反应制备了固定化胰蛋白酶.酶蛋白的比活力及其于载体上的结合量与反应条件有关,当w(PVCA)/w(H2N-PEG-NH2)为0.5时,二者均处于最高值.此固定化酶酶促反应的最适pH值和Km值均较之溶液酶有显著提高,但二者的最适酶促反应温度却相当一致.  相似文献   

11.
We have calculated the optical and electronic properties of several conjugated organic polymers: poly(p‐phenylene‐vinylene) (PPV) and its derivatives. Cyano substitutions on the phenylene ring: poly(2,5‐dicyano‐p‐phenylene‐vinylene) (2,5‐DCN‐PPV) and on the vinylene linkage: poly(p‐phenylene‐7(,8)‐(di)cyano‐vinylene) are considered. In addition, poly(quinoxaline‐vinylene) (PQV) is studied. The infinite isolated quasi‐1D chains are treated with periodic boundary conditions, using atomic basis sets. In a comparative study of PPV, some issues regarding the selection of the functionals and basis sets are discussed and excitation energies derived from time‐dependent and from ordinary methods are compared. It is concluded that for these polymers the calculations are informative at the B3LYP/6‐31G** density functional theory (DFT) level. The absolute values might change with improved methods, but the similarity of the polymers suggests that the relative characterization is adequate. Band structures are communicated along with characteristics of the highest occupied and the lowest unoccupied crystal orbitals (HOCO and LUCO). Electron affinities, ionization potentials, valence and conduction bandwidths, and effective masses at the bandgap are given. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
The rheological behavior of different precursor poly(p-phenylene vinylene) (prec-PPV) monolayers at the air-water interface was investigated using an interfacial stress rheometer (ISR). This device nicely reveals a transition of the precursor poly(2,5-dimethoxy-1,4 phenylene vinylene) (prec-DMePPV) monolayer from Newtonian to elastic behavior with increasing surface pressure. The transition is accompanied by an increase in the modulus. This behavior coincides with the coagulation of different 2D condensed domains as revealed by Brewster angle microscopy (BAM). However, partly converted prec-DMePPV monolayers show elastic behavior even at low surface pressures, although a sudden increase of the moduli does occur. This phenomenon is attributed to enhanced hydrophobic interactions between the conjugated moieties in the partly converted polymers. The latter also explains the stretching behavior of the partly converted prec-DMePPV upon transfer in Langmuir-Blodgett-type vertical dipping. The increase of the moduli which is observed is much more gradual in the precursor poly(2,5-dibutoxy-1,4-phenylene vinylene), prec-DBuPPV, a monolayer which is in agreement with the expected expanded state of the latter monolayer.  相似文献   

13.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

14.
Alkene metathesis is a superb methodology. We report the progress using alkene metathesis in the synthesis of polymeric organic semiconductors. Three classes of polymers have been synthesized using acyclic diene metathesis (ADMET) or ring opening metathesis polymerization (ROMP), viz., poly(acetylene)s (PA), poly(arylene‐vinylene)s (PAV), and organometallic polymers. For PAs, ROMP of cyclooctatetraenes is best, whereas for PAV, both ADMET and indirect and direct ROMP are viable. Metathesis performs flawlessly with the correct monomers, as molybdenum and particularly the robust Ru carbenes demonstrate. When performing ROMP, one is often rewarded with structurally uniform polymers that can display very low polydispersities. Overall, metathesis is a powerful tool for the preparation of semiconducting polymers.  相似文献   

15.
Diphenylaminobiphenylated stryl based alternating copolymers with phenyl or fluorene, which were expected to have a terphenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant and a phenyl/fluorene/phenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant, were synthesized by a Suzuki coupling reaction. The obtained copolymers were confirmed with various types of spectroscopy. The alternating copolymers showed good hole‐injection properties because of their low oxidation potential and good solubility and high thermal stability with a high glass‐transition temperature. The alternating copolymers showed blue emissions because of the adjusted conjugation lengths; the maximum wavelength was 460 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} and 487 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl] vinylene‐alt‐9,9‐dihexylfluorene}. The maximum brightness of indium tin oxide/poly(3,4‐ethylene dioxythiophene)/polymer/LiF/Al devices with poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} or poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐9,9‐dihexylfluorene} as the emitting layer was 250 or 1000 cd/m2, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 341–347, 2007  相似文献   

16.
Statistical copolymers 5 containing poly(2-dimethyloctylsilyl-1,4-phenylenevinylene) (DMOS-PPV) and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) have been synthesized using the dehydrohalogenation condensation route. The copolymers show a shift of photoluminescence maxima to longer wavelengths as the proportion of the MEH-PV unit increases. This trend is accompanied by reduced efficiencies and lower turn-on voltages in single layer electroluminescent devices. Light-emitting electrochemical cells (LECs) have been prepared using a blend of DMOS-PPV 1 with poly(ethylene oxide)/lithium triflate and the homopolymer poly[2-methoxy-5-(triethoxymethoxy)-1,4-phenylene vinylene] (MTEM-PPV) 9 with lithium triflate. In comparison with single-layer devices which were fabricated using the homopolymers 1 and poly[2,5-bis(triethoxymethoxy)-1,4-phenylene vinylene] (BTEM-PPV) 10 , the LEC devices showed lower turn-on voltages.  相似文献   

17.
We report a simple one pot process for the preparation of lead sulfide (PbS) nanocrystals in the conjugated polymer poly (2-methoxy-5-(2'ethyl-hexyloxy)-p-phenylene vinylene)(MEH-PPV), and we demonstrate electronic coupling between the two components.  相似文献   

18.
可溶性聚对苯乙炔衍生物的合成   总被引:4,自引:0,他引:4  
聚对苯乙炔(PPV)具有独特的光电性能,经强氧化剂掺杂后是一类重要的导电材料[1],而且具有良好的非线性光学(NLO)性质[2],也是目前性能最好的高分子电致发光材料[3,4].可溶性的PPV衍生物有望在显示领域广泛应用,从而成为电致发光领域研究的新...  相似文献   

19.
This paper concerns investigations of the third order nonlinear optical response of poly(arylene vinylene) polymers and in particular precursor route poly(p-phenylene vinylene) [PPV]. Results for photoexcitation measurements provide information on the response time and the nature of the nonlinearity in the single-photon resonant excitation regime. Transmission third harmonic generation [THG] measurements yield complimentary information on the single-photon non-resonant regime.  相似文献   

20.
A new precursor route for poly(arylene vinylene) derivatives will be presented. In this way non-ionic precursor polymers are obtained which show an enhanced thermal stability and are soluble in organic solvents. This enables a thorough structural characterization and the study of the mechanism. Experiments have been performed to differentiate between a radical or an ionic polymerization mechanism. Furthermore possibilities to tune solubility characteristics and to introduce defects in the polymer backbone will be discussed. Also the scope for this new route was explored. The first results indicate that the versatility exceeds that of the Wessling route, e.g. the synthesis of precursors for poly(p-biphenylene vinylene) and poly(2,6-naphthylene vinylene) could be accomplished in our case, whereas it failed in the case of the Wessling route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号