首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine], exhibiting well-separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time-resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.  相似文献   

2.
The opportunities of optimisation of luminance of the lanthanide compounds by modification of ligands are discussed. Variations of the excitation and luminescence efficiencies at introduction of nitro- (NO2), sulfo- (SO3), hydroxy- (OH), amino- (NH2), and phenylamino- (NHC6H5) groups in the aromatic ligands were studied. Investigation of luminescence and luminescence excitation spectra of europium and terbium compounds with 10 derivatives of benzoic acid, 2-furancarboxylic acid and their adducts with 1,10-phenanthroline and 2,2′-bipyridine was undertaken. Study of the spectra of lanthanide 8-oxyquinolinates was carried out also. Luminescence efficiencies were measured at 77 and 300 K. Paths of the energy transfer from the ligands to Ln3+ ion were examined. Influence of radicals on the energies of the ligand triplet states and on the energies of the ligand–metal charge transfer states (LM CTS) of europium compounds was analysed. High luminescence efficiencies of europium and terbium benzoates, and terbium anthranylates and salicylates were obtained. Effect of increasing the luminescence efficiencies of europium salicylates and 8-oxyquinolinates at introduction of acceptor nitro-and sulfo-groups in the ligand was revealed. Channel of dissipation of the excitation energy through the ligand π*–n transition of europium and terbium nitro- and dinitrobenzoates was found. Influence of relative positions of the lowest triplet levels of two non-equivalent ligands of compound on the energy transfer to Eu3+ and Tb3+ ions was considered.  相似文献   

3.
It was found, that alkali metal-europium dinitrosalicylates of composition M3Eu(3,5-NO2-Sal)3·nH2O (M = Li, Na, K, Cs) are intense red luminophores with wide excitation band. Using methods of optical spectroscopy we studied the influence of nitrogroups and alkali metal counterions on Eu3+ luminescence efficiency and on processes of excitation energy transfer to Eu3+ ion in compounds synthesized. The Eu3+ luminescence and Eu3+ luminescence excitation spectra, as well as vibrational IR and Raman spectra were investigated. Details of the structure of compounds were discussed. The network of hydrogen bonds in lanthanide dinitrosalicylates is weakening at introduction of large alkali metal ions in compounds and at the increase of the temperature. As a consequence, the long-wavelength shift of the intraligand charge transfer (ILCT) band in Eu3+ excitation spectra arises at inclusion of Cs+ cations instead of Li+ in the crystal lattice of europium dinitrosalicylates and at heating of these compounds. To obtain the energy of the lowest excited triplet state the phosphorescence spectra of alkali metal-gadolinium compounds M3Gd(3,5-NO2-Sal)3·nH2O, of alkali metal dinitrosalicylate and salicylate salts were measured with time delay. Change of the energies of ligand electronic states and ligand–metal charge transfer state (LM CTS) can give a two-three orders of magnitude enhancement of the Eu3+ luminescence efficiency in dinitrosalicylates in comparison with salicylates and ten-fold enhancement at the substitution of Li+ and Na+ for Cs+ in dinitrosalicylates.  相似文献   

4.
Nanoparticles (NPs) from diketonates of Al3+, Sc3+, In3+ and Ln3+ doped with dye molecules are synthesized. The appearance of sensitized fluorescence (cofluorescence) of dye molecules due to energy transfer from the ensemble of complexes forming NPs is revealed in aqueous solutions of these NPs. It is shown that the dye cofluorescence in NPs from Eu complexes occurs as a result of two distinct processes of energy transfer (ET) to dye molecules: from singlet levels of ligands and from Eu3+ ions. It is found that the efficiency of ET from Eu3+ ions to dyes in NPs from Eu(DBM)3phen is one order of magnitude higher than the efficiency of ET from S1-levels of ligands to dyes in NPs from Al complexes with the same ligands. It is shown that the excitation of dye molecules through ligands of NPs results in the enhancement of the intensity of their fluorescence by a factor of 1.5–2 orders of magnitude compared to the excitation of their own first band of absorption.  相似文献   

5.
王林香 《无机化学学报》2017,33(10):1741-1747
采用微波固相法制备了CaWO_4∶xEu~(3+),ySm~(3+),zLi~+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu~(3+)、Sm~(3+)、Li~+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu~(3+)、Sm~(3+)、Li~+掺杂并未引起合成粉体改变晶相,仍为CaWO_4单一四方晶系结构。Eu~(3+)、Sm~(3+)共掺样品中,Sm~(3+)掺杂为3%时,Sm~(3+)对Eu~(3+)的能量传递最有效。Li~+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO_4∶3%Eu~(3+)样品比较,3%Eu~(3+)、3%Sm~(3+)共掺CaWO_4及3%Eu~(3+)、3%Sm~(3+)、1%Li~+共掺CaWO_4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu~(3+)样品寿命最短,Sm~(3+)、Eu~(3+)共掺样品随Sm~(3+)浓度增加,寿命先减小后增加,且掺杂了Li~+的样品比不掺Li~+的样品~5D_0能级寿命有所增加。  相似文献   

6.
Mixed-ligand binuclear and mononuclear europium carboxylate complexes with nitrogen-and phosphorus-containing neutral ligands have been studied by luminescence and X-ray photoelectron spectroscopy. The coordination of neutral ligands through the nitrogen donor atom leads to an increase in electron density at the Eu3+ atom. In groups of carboxylates of the same type, the coordination of neutral donor ligands leads to an increase in the relative intensity of the 5 D 0-7 F 4 electric dipole transition. Analysis of the luminescence excitation spectra points to the presence of two excitation energy transfer channels for mixed-ligand europium trifluoroacetate and toluate complexes and of one channel for europium cinnamate complexes with neutral ligands.  相似文献   

7.
YF3:Eu3+ nanobundles were synthesized by a facile microemulsion method. Analysis of X-ray diffraction, scanning electron microscope, and transmission electron microscopy reveals that each nanobundle consists of numerous nanowhiskers with a mean length of ∼500 nm and a mean diameter of ∼2 nm. Under 393-nm excitation, the luminescence was dominated by 5D0 → 7F1 transition, indicating the inversion symmetry of Eu3+ site. The luminescence intensity increased with increasing Eu3+ concentration, up to about 30 mol%, and then decreased abruptly. The peak positions and spectral shapes of emissions were independent of Eu3+ concentration. Finally, the critical distance of energy transfer was calculated.  相似文献   

8.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

9.
A series of Ln3+-metal centered complexes, Ln(TTA)3(DPPI) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; or Ln = Gd, 4) [(DPPI = N-(4-(1H-imidazo [4,5-f][1,10]phenanthrolin-2-yl)phenyl)-N-phenylbenzenamine) and (TTA = 2-Thenoyltrifluoroacetone)] have been synthesized and characterized. Among which, the Eu3+-complex shows efficient purity red luminescence in dimethylsulfoxide (DMSO) solution, with a Commission International De L’ Eclairage (CIE) coordinate at x = 0.638, y = 0.323 and ΦEuL = 38.9%. Interestingly, increasing the amounts of triethylamine (TEA) in the solution regulates the energy transfer between the ligand and the Eu3+-metal center, which further leads to the luminescence color changing from red to white, and then bluish-green depending on the different excitation wavelengths. Based on this, we have designed the IMPLICATION logic gate for TEA recognition by applying the amounts of TEA and the excitation wavelengths as the dual input signal, which makes this Eu3+-complex a promising candidate for TEA-sensing optical sensors.  相似文献   

10.
采用微波固相法制备了CaWO4xEu3+,ySm3+,zLi+红色荧光粉。测量样品的XRD图、激发谱、发射谱及发光衰减曲线,研究并分析了Eu3+、Sm3+、Li+的掺杂浓度,对样品微结构、光致发光特性、能量传递及能级寿命的影响。结果表明,Eu3+、Sm3+、Li+掺杂并未引起合成粉体改变晶相,仍为CaWO4单一四方晶系结构。Eu3+、Sm3+共掺样品中,Sm3+掺杂为3%时,Sm3+对Eu3+的能量传递最有效。Li+掺杂起到了助熔剂和敏化剂的作用,使样品发光更强。在394 nm激发下,与CaWO4:3%Eu3+样品比较,3%Eu3+、3%Sm3+共掺CaWO4及3%Eu3+、3%Sm3+、1%Li+共掺CaWO4样品的发光分别增强2倍及2.4倍。同一激发波长下,单掺Eu3+样品寿命最短,Sm3+、Eu3+共掺样品随Sm3+浓度增加,寿命先减小后增加,且掺杂了Li+的样品比不掺Li+的样品5D0能级寿命有所增加。  相似文献   

11.
Two series of Eu3+-doped homologous-SBA-15 materials (abbreviated as MPTMS-SBA-15: Eu3+ and CTMS-SBA-15: Eu3+) have been synthesized by a hydrolysis-controlled technology, in which two novel silane crosslinking reagents (3-(methacryloyloxy) propyltrimethoxysilane (MPTMS) and 3-(chloropropyl) trimethoxysilane (CTMS)) are used as silicate precursor instead of traditional tetraethoxysilane (TEOS). It can be found that the different silicate precursors with different functional groups have influence on the physical properties of the corresponding homologous materials. In comparison to the pure SBA-15, the BET surface area and pore size of the modified mesoporous materials have been changed. Finally, the characteristic luminescence is observed for the 5D0 → 7FJ (J = 0, 1, 2) transition of Eu3+ ion, suggesting that these kind of homologous-SBA-15 materials are potential host for the luminescence of Eu3+, whose excitation energy can be quenched by Eu3+ to some extent.  相似文献   

12.
Spectral-luminescent characteristics of Sr2Y8(SiO4)6O2: Eu powder crystal phosphor with the apatite structure and high-intensity luminescence of Eu3+ ions have been studied. The charge state of europium in the samples has been characterized by means of X-ray L3-adsorption spectroscopy. It was established that Eu3+ forms two types of optical centers. Besides, luminescence of Eu2+ions was found. Reduction Eu3+→Eu2+ was considered, which may be due to vacancy formation in the 4f crystal lattice position and to negative charge transfer by this vacancy to two ions. Thus, in the silicate lattice there exist inhomogeneously distributed oxygen-deficient centers, which are responsible for nonradiative transfer of excitation energy to Eu3+ and Eu2+ ions. To study electron-vibrational interactions in the crystal phosphor samples, their IR and Raman spectra were examined. In the luminescence spectrum of Eu2+, a series of low-intensity bands caused by interaction of the 4f65d state of Eu2+ with silicate lattice vibrations was observed.  相似文献   

13.
The 1H NMR, electronic absorption, and luminescence spectra, as well as voltammograms of the reduction and oxidation of the complexes [Pd(C∧N)(N∧N)]ClO4 and [Pd(C∧N)(μ-OOCCH3)]2 [where (C∧N) is deprotonated 2-phenyl-4,5-dihydro-1,3-oxazole, and N∧N is ethylenediamine or 2,2′-bipyridine (bpy)] were compared. Magnetic nonequivalence of protons in the dihydrooxazole ring and upfield shift of the corresponding signals were observed as a result of anisotropic effect of the ring current in palladated phenyl substituents in the [Pd(C∧N)(μ-OOCCH3)]2 complex having a C 2 symmetry. One-electron reduction wave of [Pd(C∧N)bpy]+ was assigned to ligand-centered electron transfer to the π* orbital of 2,2′-bipyridine, and two oxidation waves of [Pd(C∧N)(μ-OOCCH3)]2 were attributed to successive one-electron oxidations of the palladium centers. Low-temperature (77 K) phosphorescence of [Pd(C∧N)En]+ and [Pd(C∧N)bpy]+ was ascribed to optical transition localized on the metal-complex fragment {Pd(C∧N)} and to interligand charge transfer between the chelating and cyclopalladated ligands. The formation of metal-metal bond in the complex [Pd(C∧N)(μ-OOCCH3)]2 gives rise to radiative decay of photoexcitation energy from two electronically excited states, one of which is localized on the {Pd(C∧N)} fragment, and the second corresponds to the charge transfer metal-metal-cyclopalladated ligand.  相似文献   

14.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

15.
Energy transfer from UO22+ to Sm3+ is described. The transfer efficiencies are calculated from the decrease of donor luminescence and lifetimes and from the increase of the acceptor fluorescence. It is shown that the transfer is nonradiative. The energy transfer efficiencies are greater when the donor is excited at higher energy levels due to stronger overlap between electronic levels of donor UO22+ and acceptor Sm3+. From the comparison of energy transfer efficiencies from UO22+ to Sm3+ and Eu3+ it is deduced that the overlap between excitation levels of donor and acceptor is a sufficient condition for the transfer.  相似文献   

16.
We have successfully synthesized Eu3+-doped TbPO4 nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb3+ and Eu3+, an efficient energy transfer occurs from Tb3+ to Eu3+. The effects of Eu3+ concentration and thermal treatment on the luminescent properties of Eu3+ are investigated. The increase of Eu3+ concentration leads to the increase of the energy transfer efficiency from Tb3+ to Eu3+, but also enhances the probability of the interaction between neighboring Eu3+, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3+ presents an obvious increase, but almost no change for the luminescence of Tb3+. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.  相似文献   

17.
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3Bpy and Eu(DBM)3Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2′-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+, resulting in a high quantum yield of 0.67 % at 2.1 W cm−2. The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+-based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.  相似文献   

18.
To develop new fluorescent and afterglow materials, Mn2+ and Eu3+ co-doped ZnO–GeO2 glasses and glass ceramics were prepared by a sol–gel method and their optical properties were investigated by measuring luminescence, excitation and afterglow spectra, and luminescence quantum yield (QY). Under UV irradiation at 254 nm, some glasses and all of the glass ceramics showed green luminescence peaking at 534 nm due to the 4T1 → 6A1 transition of tetrahedrally coordinated Mn2+ ions. The strongest luminescence was observed in a glass ceramic of 0.1MnO–0.3Eu2O3–25ZnO–75GeO2 heat treated at 900 °C, with QY of 49.8%. All of the green-luminescent glasses and glass ceramics showed green afterglow, and the afterglow lasting for more than 60 min was obtained in a glass ceramic heat treated at 900 °C. It is considered that the Eu3+ ions may behave as electron trapping centers to be associated with the occurrence of the green afterglow due to the Mn2+ ions in the co-doped system.  相似文献   

19.
In this work, a latent energy-transfer process in traditional Eu3+,Tb3+-doped phosphors is proposed and a new class of Eu3+,Tb3+-doped Na4CaSi3O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+,Tb3+-doped phosphors, the as-synthesized Eu3+,Tb3+-doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+/Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+–O2− charge-transfer energy, 4f–5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+→Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+, 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10O17:Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.  相似文献   

20.
Homoleptic 2,2′-bipyridyl complexes of lanthanides (Ln), Ln(bpy)4, were prepared by the reactions of iodides LnI2(THF)2 (Ln=Sm, Eu, Tm, or Yb), LnI3(THF)3 (Ln=La, Ce, Pr, Nd, Gd, or Tb), or bis(trimethylsilyl)amides Ln[N(SiMe3)2]3 (Ln=Dy, Ho, Er, or Lu) with bipyridyllithium in tetrahydrofuran (THF) or 1,2-dimethoxyethane in the presence of free 2,2′-bipyridine. The IR and ESR spectral data, the magnetic susceptibilities, and the results of X-ray diffraction analysis indicate that the complexes of all elements of the lanthanide series, except for the europium complex, contain Ln+3 cations and anionic bpy ligands. According to the X-ray diffraction data, the coordination polyhedra about the Sm and Eu atoms are cubes, whereas the environment about the Yb atom is a distorted dodecahedron. In the ionic complex [Lu(bpy)4][Li(THF)4], the geometry of the [Lu(bpy)4] anion is similar to that of the Lu(bpy)4 complex. The possible modes of charge distributions over the ligands,viz., Ln(bpy2−)(bpy.−)(bpy0)2 and Ln(bpy.−)3(bpy0), are discussed. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1897–1904, November, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号