首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.  相似文献   

2.
We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2)K Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.  相似文献   

3.
Gaussian linking of a semiclassical path of a charged particle with a magnetic flux tube is responsible for the Aharonov-Bohm effect, where one observes interference proportional to the magnitude of the enclosed flux. We construct quantum mechanical wave functions where semiclassical paths can have second order linking to two magnetic flux tubes, and show there is interference proportional to the product of the two fluxes.  相似文献   

4.
The 2 + 1 dimensional lattice models of Levin and Wen (2005) [1] provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.  相似文献   

5.
6.
《Physics letters. A》2020,384(32):126828
We simulate various topological phenomena in condense matter, such as formation of different topological phases, boundary and edge states, through two types of quantum walk with step-dependent coins. Particularly, we show that one-dimensional quantum walk with step-dependent coin simulates all types of topological phases in BDI family, as well as all types of boundary and edge states. In addition, we show that step-dependent coins provide the number of steps as a controlling factor over the simulations. In fact, with tuning number of steps, we can determine the occurrences of boundary, edge states and topological phases, their types and where they should be located. These two features make quantum walks versatile and highly controllable simulators of topological phases, boundary, edge states, and topological phase transitions. We also report on emergences of cell-like structures for simulated topological phenomena. Each cell contains all types of boundary (edge) states and topological phases of BDI family.  相似文献   

7.
The construction of Turaev and Viro involving quantum 6j-symbols and giving rise to invariants of closed, compact three-manifolds is extended. It leads to invariants of coloured graphs on the boundary of compact three-manifolds. This allows one to derive surgery formulas when cutting along an arbitrary two-manifold. In particular all axioms of a topological quantum field theory may be verified and the dimensions of the associated Hilbert spaces are given by the square of the Verlinde formula.  相似文献   

8.
We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the ν=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.  相似文献   

9.
We derive a master equation that allows us to study non-equilibrium dynamics of a quantum antiferromagnet. By resorting to spin-wave theory, we obtain a closed analytic form for the magnon decay rates. These turn out to be closely related to form factors, which are experimentally accessible by means of neutron and Raman scattering. Furthermore, we compute the time evolution of the staggered magnetization showing that, for moderate temperatures, the magnetic order is not spoiled even if the coupling is fully isotropic.  相似文献   

10.
采用固体物理理论和方法,研究了单层石墨烯的量子电容和它的温度稳定性随温度和电压的变化规律,探讨原子非简谐振动对它的影响.结果表明:(1)当电压一定时,单层石墨烯的量子电容和温度稳定性系数均随温度升高发生非线性变化,电压小于2.3 V时,量子电容随温度升高而增大,温度稳定性系数随温度升高由缓慢变化到很快增大,电压高于2.3 V时,量子电容随温度升高先增大后减小,而其温度稳定性系数随温度升高由缓慢变化到很快减小.温度一定时,量子电容只在电压值为0.4~2.8 V范围内才变化较小,而电压值大于2.8 V时,量子电容迅速减小并趋于0;(2)与简谐近似相比,非简谐项会使石墨烯量子电容有所增大,且温度愈高,两者的差愈大,非简谐效应愈显著,温度为300 K时,非简谐的量子电容要比简谐近似的值大0.33%,而温度为1 000 K时,差值增大到1.47%;(3)电压在1.5~1.8 V之间,而温度低于800 K时,石墨烯量子电容的温度稳定性系数最小且不随温度而变,储能性能的温度稳定性最好;(4)非简谐项会使它的量子电容热稳定性系数比简谐近似的值增大,且增大的情况与温度有关,当温度为400 K时量子电容热...  相似文献   

11.
戴建辉  张为民 《物理》2006,35(8):629-631
文章对低维量子磁性的基本问题和相关研究进展作了简单评述,强调了量子非线性Sigma模型在研究量子海森伯反铁磁体的低能物理方面所起的作用以及理论本身存在的疑难问题,并简单介绍了作者最近提出的克服这些疑难问题的一个新建议.  相似文献   

12.
Quantum systems with a finite number of freedom degrees ff develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low ff, particularly f=2f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition.  相似文献   

13.
We provide a family of general monogamy inequalities for global quantum discord (GQD), which can be considered as an extension of the usual discord monogamy inequality. It can be shown that those inequalities are satisfied under the similar condition for the holding of usual monogamy relation. We find that there is an intrinsic connection among them. Furthermore, we present a different type of monogamy inequality and prove that it holds under the condition that the bipartite GQDs do not increase when tracing out some subsystems. We also study the residual GQD based on the second type of monogamy inequality. As applications of those quantities, we investigate the GQDs and residual GQD in characterizing the quantum phase transition in the transverse field Ising model.  相似文献   

14.
15.
We perform the dimensional reduction of the linear σ model at one-loop level. The effective potential of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group equation which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum unstability of the model for large N.  相似文献   

16.
These are three introductory lectures on the relation between representations of affine Kac-Moody algebras, homology of configuration spaces with local coefficient systems, and quantum groups. The first lecture contains background on highest weight representations of affine Kac-Moody algebras. In the second lecture, conformal blocks, the Friedan-Shenker connection and the Knizhnik-Zamolodchikov (KZ) equation are reviewed. In the third lecture, the case of slz is studied in more detail. Integral representations of solutions of the KZ equation are derived, and recent results, obtained in collaboration with C. Wieczerkowski, on the relation between integration cycles and representations of Uq (sl2) are explained.  相似文献   

17.
Munshi G. Mustafa 《Pramana》2006,66(4):669-687
We briefly introduce the thermal field theory within imaginary time formalism, the hard thermal loop perturbation theory and some of its applications to the physics of the quark-gluon plasma, possibly created in relativistic heavy-ion collisions  相似文献   

18.
In this paper, we review classical and quantum field theory of massive non-interacting spin-two fields. We derive the equations of motion and Fierz–Pauli constraints via three different methods: the eigenvalue equations for the Casimir invariants of the Poincaré group, a Lagrangian approach, and a covariant Hamilton formalism. We also present the conserved quantities, the solution of the equations of motion in terms of polarization tensors, and the tree-level propagator. We then discuss canonical quantization by postulating commutation relations for creation and annihilation operators. We express the energy, momentum, and spin operators in terms of the former. As an application, quark–antiquark currents for tensor mesons are presented. In particular, the current for tensor mesons with quantum numbers JPC=2−+JPC=2+ is, to our knowledge, given here for the first time.  相似文献   

19.
A general definition of convolution between two arbitrary four-dimensional Lorentz invariant (fdLi) tempered ultradistributions is given, in both Minkowski and Euclidean space (spherically symmetric tempered Ultradistributions). The product of two arbitrary fdLi distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. Several examples of convolution of two fdLi tempered ultadisrtibutions are given. In particular, we calculate exactly the convolution of two Feynman's massless prapagators. An expression for the Fourier transform of a Lorentz invariant tempered ultradistribution in terms of modified Bessel distributions is obtained in this work (generalization of Bochner's formula to Minkowski space). From the deduction of the convoltion formula, we obtain the generalization to the Minkowski space, of the dimensional regularization of the perturbation theory of Green functions in the Euclidean configuration space given in Erdelyi (Higher Transcendental Functions, 1953). As an example we evaluate the convolution of two n-dimensional complex-mass Wheeler propagators.  相似文献   

20.
In this work, a general definition of convolution between two arbitrary tempered ultradistributions is given. When one of the tempered ultradistributions is rapidly decreasing this definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional case, when the tempered ultradistributions are even in the variables k 0 and , we obtain an expression for the convolution, which is more suitable for practical applications. The product of two arbitrary even (in the variables x 0 and r) four-dimensional distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. With this definition of convolution, we treat the problem of singular products of Green Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormalizable theories). Several examples of convolution of two tempered ultradistributions are given. In particular, we calculate the convolution of two massless Wheeler's propagators and the convolution of two complex mass Wheeler's propagators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号