共查询到20条相似文献,搜索用时 15 毫秒
1.
Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors 下载免费PDF全文
This paper proposes a universal spin-dependent variable
range hopping theoretical model to describe various experimental
transport phenomena observed in wide-band-gap oxide ferromagnetic
semiconductors with high transition metal concentration. The
contributions of the `hard gap' energy, Coulomb interaction,
correlation energy, and exchange interaction to the electrical
transport are considered in the universal variable range hopping
theoretical model. By fitting the temperature and magnetic field
dependence of the experimental sheet resistance to the theoretical
model, the spin polarization ratio of electrical carriers near the Fermi
level and interactions between electrical carriers can be
obtained. 相似文献
2.
The resistive switching characteristics of Au/ZnTe/ITO structure with polycrystalline ZnTe film as resistive switching layer is investigated. Macroscopically, 100 bipolar switching cycles under the direct current (dc) voltages were carried out and the conduction states can retain for several hours. Microscopically, reading and writing operations can be achieved on ZnTe film with Au top electrode replaced by conductive Atomic Force Microscopy (c-AFM) tip. The I–V characteristic in low resistance state (LRS) is linear in the whole range of voltage. The I–V characteristic in high resistance state (HRS) is linear in the low voltage while it obeys Schottky emission in the high voltage, and Schottky barrier height is symmetric in the positive and negative voltage. During linear I–V characteristic voltage range, the electrons transport between adjacent point defects via Mott variable range hopping. The higher hopping distance and higher activation energy in HRS contribute to the higher resistance value in HRS compared with LRS. Impedance spectroscopy in HRS and LRS both behave as a semicircle, which accords with the semiconductor-like characteristic of conductive point defects. Photoluminescence (PL) spectroscopy indicates the decisive role of deep level defects in conduction. This study confirms the intrinsic resistive switching characteristic of ZnTe film and provides a new choice for intrinsic non-oxides material in nonvolatile memory application. 相似文献
3.
Neftali L. V. Carre?o Michael R. Nunes Irene T. S. Garcia Marcelo O. Orlandi Humberto V. Fajardo Elson Longo 《Journal of nanoparticle research》2009,11(4):955-963
Several types of carbon nanostructures (amorphous and graphitic), for the coating of SnO2 nanobelts and nanoparticles were obtained by a single catalytic process, during methane, natural gas, and methanol decomposition
using the reactivity of surface-modified SnO2 nanostructure as a nanotemplate. The nanostructured catalyst templates were based on transition metal nanoparticles supported
on SnO2 nanobelts previously prepared by a carbothermal reduction process. Carbon-coated SnO2 nanopowders were also successfully synthesized for the fabrication of carbon spheres. The carbon coating process and yield,
along with the nature of the nanostructured carbon, are strongly influenced by the chemically modified surface of the SnO2 nanostructure template and the chemical reaction gas composition. The preliminary catalytic activity and gas-sensing properties
of these novel materials based on metal nanoparticles and carbon-coated SnO2 were determined. 相似文献
4.
M. Wasi Khan Shahid Husain M.A. Majeed Khan Maneesha Gupta Ravi Kumar J.P. Srivastava 《哲学杂志》2013,93(22):3069-3079
The electrical transport properties of LaFe1? x Ni x O3 (0.1 ≤ x ≤ 0.6) bulk samples were investigated over a wide temperature range, i.e. 9–300 K. Powder x-ray diffraction patterns at room temperature showed that all samples were formed in a single phase. However, a structural transformation was observed from orthorhombic (Pnma) to rhombohedral crystal symmetry at x > 0.5 in Ni-doped samples, which is supported by the electrical transport analysis. Temperature-dependent resistivity data were fitted using Mott's variable-range hopping model for a limited range of temperatures to calculate the hopping distance and the density of states at Fermi level. It was found that all parameters vary systematically with an increase in Ni concentration. Moreover, the resistivity data were also fitted using the small polaron hopping (SPH) model. The non-adiabatic SPH conduction mechanism is followed up to 50% Ni concentration, whereas an adiabatic hopping conduction mechanism is active above it. Such a change in the conduction mechanism is accompanied by subtle electronically induced structural changes involving Fe3+–O–Fe3+ and Fe3+–O–Ni3+ bond angles and bond lengths. Thus, we suggest that the transport properties can be explained according to the additional delocalization of charge carriers induced by Ni doping. 相似文献
5.
Ferromagnetism, variable range hopping and anomalous Hall effect in epitaxial Co:ZnO thin film 下载免费PDF全文
A series of high quality single crystalline epitaxial Zn0.95Co0.05O thin films is prepared by molecular beam epitaxy. Superparamagnetism and ferromagnetism are observed when the donor density is manipulated in a range of 1018 cm-3-1020 cm-3 by changing the oxygen partial pressure during film growth. The conduction shows variable range hopping at low temperature and thermal activation conduction at high temperature. The ferromagnetism can be maintained up to room temperature. However, the anomalous Hall effect is observed only at low temperature and disappears above 160 K. This phenomenon can be attributed to the local ferromagnetism and the decreased optimal hopping distance at high temperatures. 相似文献
6.
Monika Aggarwal M. Husain Samina Khan Zishan H. Khan 《Journal of nanoparticle research》2007,9(6):1047-1055
Carbon nanotubes (CNTs) are synthesized by the catalytic decomposition of acetylene using low pressure chemical vapour deposition
method (LPCVD) at 800 °C and at a chamber pressure of 10 Torr over a supported catalyst film of Fe70Pd30. Morphology of these CNTs is studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and
High Resolution Transmission Electron Microscopy (HRTEM). From HRTEM image of these multi-walled carbon nanotubes (MWNTs),
it is clear that these MWNTs do not possess a co-axial cylindrical structure, but are composed of imperfect and broken graphite
cylinders of different sizes. The average diameter and length of the nanotubes varies between 20–70 nm and 5–60 μm respectively.
Electrical transport measurements of these MWNTs are studied over a temperature range of 298–4.2 K. The results have been
interpreted in terms of variable-range hopping (VRH) over the entire temperature range of 298–4.2 K. Three-dimensional variable-range
hopping (VRH) is suggested for the temperature range (298–125 K), while two-dimensional VRH is observed for the temperature
range (125–4.2 K). 相似文献
7.
Venkataramana Bonu A. Das A. K. Sivadasan A. K. Tyagi Sandip Dhara 《Journal of Raman spectroscopy : JRS》2015,46(11):1037-1040
Raman forbidden modes and surface defect‐related Raman features in SnO2 nanostructures carry information about disorder and surface defects which strongly influence important technological applications like catalysis and sensing. Because of the weak intensities of these peaks, it is difficult to identify these features by using conventional Raman spectroscopy. Tip enhanced Raman spectroscopy (TERS) studies conducted on SnO2 nanoparticles (NPs) of size 4 and 25 nm have offered significant insights of prevalent defects and disorders. Along with one order enhancement in symmetry allowed Raman modes, new peaks related to disorder and surface defects of SnO2 NPs were found with significant intensity. Temperature‐dependent Raman studies were also carried out for these NPs and correlated with the TERS spectra. For quasi‐quantum dot sized 4‐nm NPs, the TERS study was found to be the best technique to probe the finite size‐related Raman forbidden modes. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Ying Guo Jing Zhang Feng Zhu Zhong Xue Yang Jinzhou Xu Jianyong Yu 《Applied Surface Science》2008,254(16):5124-5128
Self-assembly of β-Ga2O3 (beta-gallium oxide) nanobelts with diameters of 50–100 nm and lengths of tens to hundreds of microns have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Under appropriate conditions such as nanobelts concentration, controlled solvent evaporation, β-Ga2O3 nanobelts assemble into a fan-like structure on the substrate. A tendency of these nanobelts to align parallel to each other was also observed. The mechanism behind the formation of self-assembly of β-Ga2O3 nanobelts has been proposed on the basis of lateral capillary forces. 相似文献
9.
A. Molak M. Paluch S. Pawlus Z. Ujma M. Pawełczyk I. Gruszka 《Phase Transitions》2013,86(6-7):447-460
The (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 ceramics with perovskite structure were sintered. The XRD test proved that the samples are cubic (a?=?3.920?±?0.001?Å). Microstructure and atomic composition were determined with a SEM (JSM-5410) equipped with energy dispersion X-ray analyser (ISIS-300). The fluctuation in the chemical composition was found indicating on local disorder. Broadband dielectric spectroscopy in the range 10?1–3?·?107?Hz was applied within the range of 100–650?K. The real, ?′(f,?T), and imaginary, ?″(f,?T), parts of complex dielectric permitivity characteristics, both in the temperature and frequency domain, show relaxation processes partially covered by electric conductivity. At high temperatures the electric conductivity exhibits a thermally activated behaviour σ(f,?T)?∝?exp(?E a/kT) but the variable range hopping (VRH) dependence σ?∝?exp[?(T 0/T)1/4] is manifested at low temperatures. The derivatives technique in the frequency (??log??/??log?ω) and temperature (??log??/?T) domain enabled various relaxation processes to be distinguished. The data converted to electric modulus representation, M*(f,?T)?=?1/?*, exhibited clearly resolved relaxation peaks. The relaxation times obtained from the peaks position show a slightly non-Arrhenius temperature behaviour with the activation energy varying in 0.4–0.6?eV range and characteristic time of the electric conductivity relaxation of the order of 10?12?s. The relaxation times can be fitted at better accuracy with the VRH dependence where T 0 are of the order of 108?K. It is shown that the low frequency ac-conductivity converges to dc-conductivity and the relation σ(0)?~?ωm?~?τm ?1 typical for the disordered solids applies. The conduction current relaxation relationship behaves in accord with the VRH system: σdc?∝?(T/T 0)q (e 2/kT) ωc, where ωc?=?νph exp[?(T 0/T)1/4] is valid for the locally disordered (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 compound. 相似文献
10.
Fabian Gyger André Sackmann Michael Hübner Pascal Bockstaller Dagmar Gerthsen Henning Lichtenberg Jan‐Dierk Grunwaldt Nicolae Barsan Udo Weimar Claus Feldmann 《Particle & Particle Systems Characterization》2014,31(5):591-596
Pd@SnO2 and SnO2@Pd core@shell nanocomposites are prepared via a microemulsion approach. Both nanocomposites exhibit high‐surface, porous matrices of SnO2 shells (>150 m2 g?1) with very small SnO2 crystallites (<10 nm) and palladium (Pd) nanoparticles (<10 nm) that are uniformly distributed in the porous SnO2 matrix. Although similar by first sight, Pd@SnO2 and SnO2@Pd are significantly different in view of their structure with Pd inside or outside the SnO2 shell and in view of their sensor performance. As SMOX‐based sensors (SMOX: semiconducting metal oxide), both nanocomposites show a very good sensor performance for the detection of CO and H2. Especially, the Pd@SnO2 core@shell nanocomposite is unique and shows a fast response time (τ90 < 30 s) and a very good response at low temperature (<250 °C), especially under humid‐air conditions. Extraordinarily high sensor signals are observed when exposing the Pd@SnO2 nanocomposite to CO in humid air. Under these conditions, even commercial sensors (Figaro TGS 2442, Applied Sensor MLC, E2V MICS 5521) are outperformed. 相似文献
11.
Doping dependent metal to insulator transition in the (Bi,Pb)-2212 system: The evolution of structural and electronic properties with europium substitution 下载免费PDF全文
The present work investigates the effect of europium substitution on the(Bi,Pb)-2212 system in the concentration range 0.5 ≤ x ≤ 1.0.Phase analysis and lattice parameter calculations on the powder diffraction data and the elemental analysis of EDX show that the Eu atoms are successfully substituted into the(Bi,Pb)-2212 system.Resistivity measurements(64-300 K) reveal that the system exhibits superconductivity at x ≤ 0.5 and semiconductivity at x > 0.5.With the complete suppression of superconductivity which is known to be a quasi-two dimensional phenomenon in these materials,a metal to insulator transition takes place at x = 0.6 and the predominant conduction mechanism is found to be variable range hopping between localized states,resulting in macroscopic semiconducting behaviour.The results of electrical and structural properties of the doped(Bi,Pb)-2212 compounds suggest that the decrease of charge carrier concentration and the induced structural disorder are the more effective and dominant mechanisms in the origin of the metal to insulator transition and suppression of superconductivity due to Eu substitution at its Sr site. 相似文献
12.
T. T. Van Tran T. Si Bui S. Turrell B. Capoen P. Roussel M. Bouazaoui M. Ferrari O. Cristini C. Kinowski 《Journal of Raman spectroscopy : JRS》2012,43(7):869-875
Crack‐free (100–x) SiO2–x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional
(quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros,
Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states,
g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity
in the linear (L), i.e. σ(T) ∼exp [-(TL/T)γL], and current in the non-linear (NL), i.e.
, response regimes (
is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show
that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence
of TL and
and the values of γL and γNL. 相似文献
14.
A modified polyacrylamide gel route is applied to synthesize SnO2 nanoparticles. High-quality SnO2 nanoparticles with a uniform size are prepared using different chelating agents. The average particle size of the samples is found to depend on the choice of the chelating agent. The photoluminescence spectrum detected at λex = 230 nm shows a new peak located at 740 nm due to the surface defect level distributed at the nanoparticle boundaries. 相似文献
15.
实验首先采用改进的Hummers法制备氧化石墨,然后以氧化石墨烯为前驱体,通过水热法将锡酸钴纳米颗粒均匀镶嵌在石墨烯薄膜基片上,最终获得Co2SnO4/Graphene镶嵌复合材料. 采用X射线衍射(XRD)、扫描电子显微镜(SEM)对材料的结构和形貌进行表征,通过恒电流充放电(CC)、循环伏安法(CV)与交流阻抗法(EIS)测试了材料的电化学性能. 实验结果表明,石墨烯良好的分散性及较高的电子导电率,可以提高锡酸钴材料的电化学性能,材料首次可逆容量达到1415.2 mA·h/g,50次循环后仍能保持469.7 mA·h/g的放电比容量.
关键词:
2SnO4')" href="#">Co2SnO4
石墨烯
电化学性能
锂离子电池 相似文献
16.
臭氧在SnO2表面吸附的红外光谱研究 总被引:1,自引:0,他引:1
以SnO2催化臭氧化降解高浓度糖蜜酒精废水为探针反应,研究SnO2催化臭氧化降解糖蜜酒精废水的活性,并采用红外光谱研究臭氧在SnO2及金属氧化物改性的SnO2催化剂表面的吸附行为。结果表明:由纯氧源制得的O3在SnO2表面吸附的红外光谱上的1 027和1 055 cm-1及2 099和2 122 cm-1处存在两处明显的吸收双峰,而空气制备的O3在SnO2表面与CO及CO2等存在竞争吸附,使得O3的吸附减少,催化臭氧化降解糖蜜废水的降解率下降。催化剂助剂对SnO2催化臭氧化降解糖蜜酒精废水有较大的影响。采用Fe2O3,NiO,CuO,ZnO,MgO,SrO及BaO等金属氧化物为助剂改性的SnO2在2 236和2 213 cm-1,1628和1 599 cm-1出现强度相似的吸收峰,但是几种催化剂对CO2和CO的吸附差别较大,过渡金属改性的SnO2在1 580~1 070 cm-1处出现较宽的吸收峰,碱土金属氧化物改性的SnO2催化剂在1 580~1 070 cm-1之间,出现了1 298和1 274 cm-1两个新的峰,从而引起了不同助剂催化臭氧化的活性差别,碱土金属改性的SnO2对糖蜜酒精废水的催化臭氧化脱色效果明显优于过渡金属改性的SnO2,其中BaO改性的SnO2催化剂的活性最好。 相似文献
17.
Structural, morphological and transport properties of PrFe1? x Ni x O3 (x?=?0.1, 0.2, 0.3, 0.4 and 0.5) thin films grown on LaAlO3 substrate by pulsed laser deposition were studied experimentally. Structural analysis of the samples showed that they have in-plane compressive strain and single-phase epitaxial growth along with c-axis (001) orientation having orthorhombic structure with space group Pbnm. The observed strain is reduced with Ni substitution. The resistivity as a function of temperature follows the variable range hopping (VRH) model up to certain amount of Ni substitution (x?=?0.3) but fails for higher values of x. From the above model, parameters such as density of states at the Fermi level, N(E F), hopping energy, E h, and hopping distance R h, were calculated. Ni substitution leads to an increase in conductivity and this conduction is controlled by disorder-induced localization of charge carriers. With Ni substitution the gap parameter is found to decrease. The enhancement in conductivity and the failure of VRH model for higher doped compositions at high temperature is discussed. 相似文献
18.
F. H. Aragn J. A. H. Coaquira P. Hidalgo S. W. da Silva S. L. M. Brito D. Gouvêa P. C. Morais 《Journal of Raman spectroscopy : JRS》2011,42(5):1081-1086
Ni‐doped SnO2 nanoparticles, promising for gas‐sensing applications, have been synthesized by a polymer precursor method. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile‐type phase (tetragonal SnO2) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room‐temperature Raman spectra of Ni‐doped SnO2 nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A1g mode with the Ni content, a solubility limit at ∼2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above ∼2 mol% Ni, the redshift of A1g mode suggests that the surface segregation of Ni ions takes place. Disorder‐activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid‐solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
Abdullah Yildiz 《哲学杂志》2013,93(34):4401-4409
The temperature dependence of the charge transport in TiO2 films was investigated to establish the correlation between the Nb content and electrical properties. It was identified that temperature-dependent conductivity of the films is dominated by a phonon-assisted small polaron hopping model in the non-adiabatic regime. Applying the polaron hopping models of Mott, Schnakenberg and Emin to describe the observed behavior, temperature-dependent conductivity data of the films were analyzed. A detailed analysis in terms of small polaron hopping parameters in the investigated temperature regime was used to correlate electrical properties with the percentage of Nb. 相似文献
20.
We report an ab initio study of the electric-field gradient (EFG) at Cd impurities located at the cation site in the semiconductor SnO2(rutile phase). The study was performed with the WIEN97 implementation of the FP-LAPW method. In order to simulate the diluted
Cd-impurity in the SnO2 host and to calculate the electronic structure of the system we used a 72-atoms super-cell, studying the relaxation introduced
by the impurity in the lattice. The free-relaxation process performed shows that the relaxations of the oxygen nearest-neighbors
of the impurity are not isotropic. Our prediction for the EFG tensor are compared with experimental results and point-charge
model predictions.
This revised version was published online in September 2006 with corrections to the Cover Date. 相似文献