首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical design on a new molecular switch and fluorescent chemosensor double functional device of aza‐crown ether (2,2′‐dipyridine‐embedded N‐(9‐anthraceneyl(pyrenyl)methyl)aza‐15‐crown‐5) was explored. The interactions between ligands and a series of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) were investigated. The fully optimized geometry structures of the free ligands ( L 1, L 2) and their metal cation complexes ( L 1/M2+, L 2/M2+) were calculated with the B3LYP/6‐31G(d) method. The natural bond orbital analysis, which is based on optimized geometric structures, was used to explore the interaction of L 1/M2+, L 2/M2+ molecules. The absorption spectra of L 1, L 2, L 1/M2+, and L 2/M2+, and their excited states were studied by time‐dependent density functional theory. A new type molecular device L 2(2,2′‐dipyridine‐embedded N‐(9‐pyrenyl methyl)aza‐15‐crown‐5) is designed, which not only has the selectivity for Sr2+, and construct allosteric switch, but also has fluorescent sensor performance.  相似文献   

2.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The binding interactions of bis‐3‐benzo‐15‐crown‐5 ethers and bis‐3‐benzo‐18‐crown‐6 ethers (neutral hosts) with a series of alkali metal cations Na+, K+, Rb+ and Cs+ (charged guests) were investigated using quantum chemical density functional theory. Different optimized structures, binding energies and various thermodynamic parameters of free crown ethers and their metal cation complexes were obtained based on the Becke, three‐parameter, Lee–Yang–Parr functional using mixed basis set (C, H, O, Na+ and K+ using 6‐31 g, and the heavier cation Rb+ and Cs+ using effective core potentials). Natural bond orbital analysis is conducted on the optimized geometric structures. The main types of driving force host–guest interactions are investigated. The electron donating O offers a lone pair of electrons to the contacting LP* (1‐center valence antibond lone pair) orbitals of metal cations. The bis‐3‐benzocrown ethers are assumed to have sandwich‐like conformations, considering the binding energies to gauge the exact interactions with alkali cations. It is found that there are two different types of complexes: one is a tight ion pair and the other is a separated ion pair. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This research concerns the analysis of the proton and metal ion binding of amide macrocycles of different structures and sizes by potentiometric, 1H NMR and X‐ray diffraction methods. Protonated ligands exist as a 3D network structures. The ligands form 1:1 complexes with heavy metal ions (Cu2+, Cd2+, Pb2+, Zn2+, and Ni2+) in aqueous solutions and demonstrate the high selectivity towards Cu2+ cations. The pyridine‐2,6‐dicarbamide fragment provides structural rigidity to crown ether, resulting the molecule has an open cavity and faster kinetics of metal complexes formation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The conformational equilibria of 3‐methyl‐3‐silathiane 5 , 3‐fluoro‐3‐methyl‐3‐silathiane 6 and 1‐fluoro‐1‐methyl‐1‐silacyclohexane 7 have been studied using low temperature 13C NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5 ax: 5 eq = 15:85, 6 ax: 6 eq = 50:50 and 7 ax: 7 eq = 25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol?1) is much less than in 3‐methylthiane 9 (1.40 kcal mol?1) but somewhat greater than in 1‐methyl‐1‐silacyclohexane 1 (0.23 kcal mol?1). Compounds 5–7 have low barriers to ring inversion: 5.65 (ax → eq) and 6.0 (eq → ax) kcal mol?1 ( 5 ), 4.6 ( 6 ), 5.1 (Meax → Meeq) and 5.4 (Meeq → Meax) kcal mol?1 ( 7 ). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6 , or different conformer ratio for 5 and 7 . Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si–X and adjacent C–H, C–S, and C–C bonds proved responsible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Reactions of 2‐nitro‐, 4‐nitro‐ and 2,4‐dinitrophenylglycidyl ethers with bicyclo[2.2.1]hept‐5‐ene‐endo‐2‐ylmethylamine in isopropanol have been studied. The mixtures of products were chromatographed on silica gel and eluted with ether or ether/2‐propanol (1:1), the structures of individual products have been confirmed by IR spectra, NMR 1H, 13C spectra, using experiments that involve homonuclear and heteronuclear scalar coupling interactions (COSY, TOCSY, HMQC, HMBC), and mass spectrometry. Amino alcohols as the major products of regioselective aminolysis of epoxides (according to the Krasusky rule) have been obtained. The minor products were the compounds with two hydroxyalkyl fragments at the nitrogen atom. In case of dinitrophenylglycidyl ether, it was the minor product of aryl nucleophilic substitution (SNAr). The abnormal course of aminolysis has been confirmed by the results of quantum‐chemical calculations of activation barries and Free Gibbs energies of the competitive reactions of epoxides (at the B3LYP/6‐311 + G(d,p) level of theory). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new derivative of the previously reported 1,2‐bis(benzimidazol‐2‐yl)ethane motif, cation [1H2]2+, was synthesized under microwave irradiation and fully characterized by solution NMR, high‐resolution mass spectrometry, cyclic voltammetry and X‐ray crystallography. This cation presents a linear geometry and incorporates nitro substituents as electrochemical handles. In solution, cation [1H2]2+, is capable of threading the cavity of dibenzo‐24‐crown‐8 ether host (DB24C8) giving rise to a [2]pseudorotaxane complex [1H2?DB24C8]2+, regardless of the counterion, [CF3SO3]? or [CF3COO] ?. The interpenetrated structure of [1H2?DB24C8]2+ was proven by solution NMR and X‐ray crystallography. This host–guest complex is held together by several non‐covalent interactions, such as hydrogen bonding and ion‐dipole. An electrochemical study of [1H2]2+ in the presence of variable amounts of DB24C8 was performed; due to the irreversible redox behavior of cation [1H2]2+, it was not possible to electrochemically control the association/dissociation process with DB24C8. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The gas‐phase acidities (GA) of 2‐aryl‐2‐chloro‐1,1,1‐trifluoroethanes ( 1a ), 2‐aryl‐2‐fluoro‐1,1,1‐trifluoroethanes ( 2a ), and related compounds, XC6H4CH(Z)R where Z = Cl ( 1 ) or F ( 2 ) and R = C2F5 ( b ), t‐C4F9 ( c ), C(CF3)2C2F5 ( d ), C(CF3)2Me ( e ), Me ( f ), H ( g ), were investigated experimentally and computationally. On the basis of an excellent linear correlation (R2 > 0.99) of acidities of 1c , 1d , 1e , 1f and 2c , 2d , 2e , 2f where there is no fluorine atom at β‐position to the deprotonation site with the corrected number of fluorine atoms contained in the fluorinated alkyl group, the extent of β‐fluorine negative hyperconjugation of the CF3 and C2F5 groups (ΔGoβ‐F) was evaluated. The GAel values given by subtraction ΔGoβ‐F from the apparent GA value were considered to represent the electronic effect of the substituent X. The substituent effects on the GAel values and GA values for 1c , 1d , 1e , 1f and 2c , 2d , 2e , 2f were successfully analyzed in terms of the Yukawa–Tsuno equation. The variation of resonance demand parameter r? with the R group observed for various XC6H4CH(Z)R was linearly related to the GA (GAel) value of the respective phenyl‐substituted fluorinated alkanes. On the other hand, the corresponding correlation for the ρ values provided three lines for ArCH(Cl)R, ArCH(F)R and ArCH2R, respectively. These results supported our previous conclusion that the r? and ρ values are governed by the thermodynamic stability of the parent ion (ring substituent = H). Other factors arising from an atom bonded to the acidic center also influence the ρ value. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The complexation of L ‐ and D ‐enantiomers of phenylglycine, phenylalanine, and tryptophan with D ‐mannonaphto‐crown‐6‐ether in methanol solution was studied by NMR and isothermal titration calorimetry (ITC) at 298.15 K. The total heat effects attributed to the binding phenomena were measured in the range of 1.8 to 7.7 mJ, and the complexation was found stereo‐specific. The binding topologies were estimated basing on 1H 2D‐ROESY experiments. The analysis of Job plots obtained from 1H NMR‐monitored titrations proved the coexistence of 1:1 and 1:2 (crown ether:amino acids) complexes, which thermodynamic parameters, Ks, ΔG, ΔH°, and TΔS were determined with the aid of ITC. The 1:1 complexes were found enthalpically stabilized, generally by electrostatic interactions between the charged NH group of amino acid and crown ether macrocyclic moiety, while the binding of the second amino acid molecule was driven entropically due to solvatophobic effect. Strong enthalpy–entropy compensation points towards the uniform binding mode of all complexes studied. The mode of complex formation was found solvent dependent. For phenylalanine guest studied in various solvent systems, in contrast to the aqueous media, the noticeable chiral recognition is observed in methanol solution, and the complex stoichiometry (1:2 ether:Phe) differs from the 2:1 one, determined previously for the same host‐guest system in water (J. Thermal. Anal. Cal. 2006; 83: 575–578). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Nucleophilic substitution and dehydrochlorination reactions of a number of the ring‐substituted 1‐(arylsulfonyl)‐2‐R‐4‐chloro‐2‐butenes are studied both experimentally and theoretically. The developed synthetic procedures are characterized by a general rapidity, cheapness, and simplicity providing moderate to high yields of 1‐arylsulfonyl 1,3‐butadienes (48–95%), 1‐(arylsulfonyl)‐2‐R‐4‐(N,N‐dialkylamino)‐2‐butenes (31–53%), 1‐(arylsulfonyl)‐2‐R‐2‐buten‐4‐ols (37–61%), and bis[4‐(arylsulfonyl)‐3‐R‐but‐2‐enyl]sulfides (40–70%). The density functional theory B3LYP/6‐311++G(2d,2p) calculations of the intermediate allylic cations in acetone revealed their high stability occurring from a resonance stabilization and hyperconjugation by the SO2Ar group. The reactivity parameters estimated at the bond critical points of the diene/allylic moiety display a high correlation (R2 > 0.97) with the Hammett (σp) constants. 1‐Arylsulfonyl 1,3‐butadienes are characterized by a partly broken π conjugated system, which follows from analysis of the two‐centered delocalization (δ) and localization (λ) index values. The highest occupied molecular orbital energies of 1‐arylsulfonyl 1,3‐butadienes are lower than those of 1,3‐butadiene explaining their low reactivity towards the Diels–Alder condensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The conformational flexibility of three covalently linked dimers consisting of two xanthene‐based moieties connected by a diphenyl ether linker was studied using NMR spectroscopy, X‐ray crystallography, and density functional theory (DFT) calculations. The three dimers interconvert as a function of pH: the doubly cationic dimer (Xan+)2 exists in acidic solutions (pH < 0.5), the mono‐alcohol monocation Xan+–Xan‐OH at intermediate pH values (pH = 1–3), and the neutral diol at the highest pH‐values (pH > 3). Each dimer exhibits conformational degrees of freedom associated with rotations of either the xanthene moiety or of the diphenyl ether (DPE) linker. The barriers for rotation of the xanthylium moiety were evaluated using DFT calculations, yielding values of 23 kcal/mol for (Xan+)2 and 11 kcal/mol for (Xan‐OH)2, respectively. The rotational barrier for the diphenyl ether linker in Xan+–Xan‐OH (15 kcal/mol) was experimentally determined using variable temperature NMR measurements. The relative orientation of the two –OH groups in (Xan‐OH)2 diol was investigated in solution and the solid state using NMR spectroscopy and X‐ray crystallography. The conformer observed in the solid state was found to be the In–Out conformer, while free rotation of the xanthenol units is thought to occur on the NMR timescale at room temperature. These studies are relevant for the design of linkers for efficient water oxidation catalysts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The complex formation of bis(18‐crown‐6)stilbene ( 1 ) and its supramolecular donor‐acceptor complex with N,N′‐bis(ammonioethyl) 1,2‐di(4‐pyridyl)ethylene derivative ( 2 ) with alkali and alkaline‐earth metal perchlorates has been studied using absorption, steady‐state fluorescence, and femtosecond transient absorption spectroscopy. The formation of 1 ?Mn+ and 1 ?(Mn+)2 complexes in acetonitrile was demonstrated. The weak long‐wavelength charge‐transfer absorption band of 1 · 2 completely vanishes upon complexation with metal cations because of disruption of the pseudocyclic structure. The spectroscopic and luminescence parameters, stability constants, and 2‐stage dissociation constants were calculated. The initial stage of a recoordination process was found in the excited complexes 1 ?M+ and 1 ?(M+)2 (M = Li, Na). The pronounced fluorescence quenching of 1 · 2 is explained by very fast back electron transfer (τet = 0.397 ps). The structure of complex 1 · 2 was studied by X‐ray diffraction; stacked ( 1 · 2 )m polymer in which the components were connected by hydrogen bonding and stacking was found in the crystal. These compounds can be considered as novel optical molecular sensors for alkali and alkaline‐earth metal cations.  相似文献   

16.
The Ru(III)/Os(VIII)/Pd(II)/Pt(IV)‐catalysed kinetics of oxidation of glycyl–glycine (Gly‐Gly) by sodium N‐chloro‐p‐ toluenesulfonamide (chloramine‐T; CAT) in NaOH medium has been investigated at 308 K. The stoichiometry and oxidation products in each case were found to be the same but their kinetic patterns observed are different. Under comparable experimental conditions, the oxidation‐kinetics and mechanistic behaviour of Gly‐Gly with CAT in NaOH medium is different for each catalyst and obeys the underlying rate laws:
  • Rate = k [CAT]t [Gly‐Gly]0 [Ru(III)][OH?]x
  • Rate = k [CAT]t[Gly‐Gly]x [Os(VIII)]y[OH?]z
  • Rate = k [CAT]t[Gly‐Gly]x [Pd(II)][OH?]y
  • Rate = k [CAT]t[Gly‐Gly]0 [Pt(IV)]x[OH?]y
Here, and x, y, z < 1 in all the cases. The anion of CAT, CH3C6H4SO2NCl?, has been postulated as the common reactive oxidising species in all the cases. Under comparable experimental conditions, the relative ability of these catalysts towards oxidation of Gly‐Gly by CAT are in the order: Os(VIII) > Ru(III) > Pt(IV) > Pd(II). This trend may be attributed to the different d‐electronic configuration of the catalysts. Further, the rates of oxidation of all the four catalysed reactions have been compared with uncatalysed reactions, under identical experimental conditions. It was found that the catalysed reaction rates are 7‐ to 24‐fold faster. Based on the observed experimental results, detailed mechanistic interpretation and the related kinetic modelling have been worked out for each catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The SUT‐NANOTEC‐SLRI beamline was constructed in 2012 as the flagship of the SUT‐NANOTEC‐SLRI Joint Research Facility for Synchrotron Utilization, co‐established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate‐energy X‐ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X‐ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s?1 (100 mA)?1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K‐edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.  相似文献   

18.
In the present paper, reaction of zinc‐glycylphenylalanine ([Zn(II)‐Gly‐Phe]+) with ninhydrin has been investigated in gemini (m‐s‐m type; m = 16, s = 4–6) surfactants at temperature (70 °C) and pH (5.0). Monitoring the appearance of product at 400 nm was used to follow the kinetics, spectrophotometrically. The order of the reaction with respect to [Zn(II)‐Gly‐Phe]+ was unity while with respect to [ninhydrin] was fractional. The reaction constants involved in the mechanism were obtained. In addition to the rate constant (kΨ) increase and leveling‐off regions are observed with the geminis, just like as seen with conventional surfactant hexadecyltrimethylammonium bromide (CTAB), the former produced a third region of increasing kΨ at higher concentrations. A close agreement between observed and calculated rate constants was found under varying experimental conditions. A suitable mechanism consistent with the experimental findings has been proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The electroluminescence intensity of the phenanthrene‐functionalized gold nanoparticles, PMPT‐Au nanoparticles/CPB: Ir(PIA)2 (acac) film, was increased by 4.9 times compared with control device, CPB: Ir(PIA)2 (acac) due to coupling between the excitons of emissive layer and localized surface plasmonic resonance of PMPT‐Au NPs. The maximum luminous efficiencies of devices II to IV with PMPT‐Au NPs were 39.2 cd A?1 (11.8 V), 40.1 cd A?1 (10.5 V), and 43.1 cd A?1 (9.0 V), respectively. The increment of current efficiency with PMPT‐Au NP coated devices was strongly related to the energy transfer between the radiated light generated from CBP: Ir(PIA)2 (acac) emissive layer and localized surface plasmonic resonance excited by PMPT‐Au NP layer.  相似文献   

20.
The values of the enthalpy (53.3; 51.3; 20.0 kJ mol?1), entropy (?106; ?122; ?144 J mol?1K?1), and volume of activation (?29.1; ?31.0; ?cm3 mol?1), the reaction volume (?25.0; ?26.6; ?cm3 mol?1) and reaction enthalpy (?155.9; ?158.2; ?150.2 kJ mol?1) have been obtained for the first time for the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione 1 , with cyclohexene 4 , 1‐hexene 6 , and with 2,3‐dimethyl‐2‐butene 8 , respectively. The ratio of the values of the activation volume to the reaction volume (?VcorrVr ? n) in the ene reactions under study, 1 + 4 → 5 and 1 + 6 → 7 , appeared to be the same, namely 1.16. The large negative values of the entropy and the volume of activation of studied reactions 1 + 4 → 5 and 1 + 6 → 7 better correspond to the cyclic structure of the activated complex at the stage determining the reaction rate. The equilibrium constants of these ene reactions can be estimated as exceeding 1018 L mol?1, and these reactions can be considered irreversible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号