首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shiny black, air‐insensitive crystals of tellurium‐rich one‐dimensional coordination polymers were synthesized by melting a mixture of the elements with TeCl4. The compounds [Ru(Te9)](InCl4)2 and [Ru(Te8)]Cl2 crystallize in the monoclinic space group type C2/c, whereas [Rh(Te6)]Cl3 adopts the trigonal space group type R$\bar 3Shiny black, air-insensitive crystals of tellurium-rich one-dimensional coordination polymers were synthesized by melting a mixture of the elements with TeCl(4). The compounds [Ru(Te(9))](InCl(4))(2) and [Ru(Te(8))]Cl(2) crystallize in the monoclinic space group type C2/c, whereas [Rh(Te(6))]Cl(3) adopts the trigonal space group type R ?3c. In the crystal structures, linear, positively charged [M(m+) (Te(n)(±0))] (M=Ru, m=2; Rh, m=3) chains run parallel to the c axes. Each of the uncharged Te(n) molecules (n=6, 8, 9) coordinates two transition-metal atoms as a bridging bis-tridentate ligand. Because the coordinating tellurium atoms act as electron-pair donors, the 18-electron rule is fulfilled for the octahedrally coordinated transition-metal cations. Based on DFT calculations, the quantum theory of atoms in molecules (QTAIM) and the electron localizability indicator (ELI) provide insight into the principles of the polar donor bonding in these complexes. Comparison with optimized ring geometries reveals substantial tension in the coordinating tellurium molecules.  相似文献   

2.
Black crystals of [Rh(Te6)]Br3 (I), [Rh(Te6)]I3 (II), [Ir(Te6)]Cl3 (III), [Ir(Te6)]Br3 (IV), and [Ir(Te6)]I3 (V) are prepared from stoichiometric mixtures of Rh or Ir, Te, and TeX4 (X: Cl, Br, I; evacuated silica tube, 300—350 °C, 7 d).  相似文献   

3.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

4.
Dark brown crystals of [NnPr4]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and tetrapropylammonium bromide. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 14.7870(3) Å, b = 9.5523(3) Å, c = 16.7325(3) Å, β = 110.56(10)° (at 123(2) K). In the solid state the [TeBr6(SeBr2)2]2– anion contains a nearly regular [TeBr6] octahedron in which the four equatorial bromo ligands have developed bonds to SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0000(4) and 3.0561(4) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV–Br distances are in the range 2.6816(3)–2.7131(3) Å and the SeII–Br bond lengths in the coordinated SeBr2 molecules are 2.3548(4) and 2.3725(4) Å.  相似文献   

5.
Four alkaline earth oxotellurate(IV) halides with common formula M3Te2O6X2 (M = Sr, Ba; X = Cl, Br) have been prepared as polycrystalline powders and/or in the form of single crystals. All compounds crystallize in the cubic space group Fd$\bar{3}$ m with cell parameters a = 15.9351(4) Å for Sr3Te2O6Cl2 (single‐crystal X‐ray data), 16.052(5) Å for Sr3Te2O6Br2 (powder X‐ray data), 16.688(2) Å for Ba3Te2O6Cl2 (single‐crystal X‐ray data) and 16.8072(3) Å for Ba3Te2O6Br1.64Cl0.36 (single‐crystal X‐ray data). The results of the crystal structure analyses reveal a rigid ${3}\atop{{\infty}}$ [M3Te2O6]2+ framework which can be described as being composed of regular octahedra of two types of chemically non‐bonded M6 octahedra that are capped by trigonal pyramidal [TeO3] anions located above every second face of one of the M6 octahedra. The halide X anions are situated in the voids of the ${3}\atop{{\infty}}$ [M3Te2O6]2+ framework. Dependent on the nature of the halogen, the anions show various kinds of occupational disorder which eventually led to a revision of the previous structure model of Ba3Te2O6Cl2. A comparative discussion with other structures of general formula M3Ch2O6X2 (M = divalent metal; Ch = Te, Se; X = Cl, Br) is presented.  相似文献   

6.
Brown crystals of [PMePh3]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriphenylphosphonium bromide. The salt 1 crystallizes in the triclinic space group P1¯ with the cell dimensions a = 10.3630(14)Å, b = 11.5140(12)Å, c = 11.7605(17)Å, α = 108.643(9)°, β = 106.171(10)° and γ = 99.077(9)° (296 K). In the solid state the [TeBr6(SeBr2)2]2— anion contains a nearly regular [TeBr6] octahedron where the four equatorial bromo ligands each have developed a bond to the SeII atom of a SeBr2 molecule. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are observed in the range 3.11—3.21Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV—Br distances are in the range 2.67—2.72Å, and the SeII—Br bond lengths in coordinated SeBr2 molecules in the range 2.33—2.34Å.  相似文献   

7.
The reactions of Te2Br with MoOBr3, TeCl4 with MoNCl2/MoOCl3, and Te with WBr5/WOBr3 yield black, needle-like crystals of [Te15X4][MOX4]2 (M = Mo, W; X = Cl, Br). The crystal structure determinations [Te15Br4][MoOBr4]2: monoclinic, Z = 1, C2/m, a = 1595.9(4) pm, b = 403.6(1) pm, c = 1600.4(4) pm, β = 112.02(2)°; [Te15Cl4][MoOCl4]2: C2/m, a = 1535.3(5) pm, b = 402.8(2) pm, c = 1569.6(5) pm, β = 112.02(2)°; [Te15Br4][WOBr4]2: C2, a = 1592.4(4) pm, b = 397.5(1) pm, c = 1593.4(5) pm, β = 111.76(2)° show that all three compounds are isotypic and consist of one-dimensional ([Te15X4]2+)n and ([MOX4]?)n strands. The structures of the cationic strands are closely related to the tellurium subhalides Te2X (X = Br, I). One of the two rows of halogen atoms that bridges the band of condensed Te6 rings is stripped off, and additionally one Te position has only 75% occupancy which leads to the formula ([Te15X4]2+)n (X = Cl, Br) for the cation. The anionic substructures consist of tetrahalogenooxometalate ions [MOX4]? that are linked by linear oxygen bridges to polymeric strands. The compounds are paramagnetic with one unpaired electron per metal atom indicating oxidation state Mv, and are weak semiconductors.  相似文献   

8.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

9.
Two modifications of the oxotellurate(VI) PbCuTeO5 were isolated as single crystals from product mixtures obtained from solid state reactions, whereas single crystals of the oxotellurates(IV) PbCuTe2O6 and [Pb2Cu2(Te4O11)](NO3)2 were grown under hydrothermal conditions. The crystal structures of all compounds comprise of characteristic coordination polyhedra, viz. nearly square [CuO4] plaquettes for divalent copper, octahedral [TeO6] units for hexavalent tellurium, trigonal‐pyramidal [TeO3] and bisphenoidal [TeO4] groups for tetravalent tellurium, and distorted [PbOx] polyhedra for divalent lead. PbCuTeO5 is dimorphic and crystallizes in a monoclinic and a triclinic modification, related by a translationengleiche group‐subgroup relation of index 2. PbCuTe2O6 represents the ideal composition of the rare mineral choloalite. The characteristic feature of the crystal structure of [Pb2Cu2(Te4O11)](NO3)2 is its layered set‐up, comprised of cationic [Pb2Cu2(Te4O11)]2+ ribbons (width approximately 6.7 Å) sandwiched between nitrate anions that are only weakly bound to the cationic layers.  相似文献   

10.
The reaction of tellurium, tellurium tetrachloride, and ZrCl4 or HfCl4, respectively, under the conditions of chemical vapour transport in a temperature gradient 220 → 200 °C yields black crystals of Te6[ZrCl6] and Te6[HfCl6]. While Te6[ZrCl6] is formed almost quantitatively, Te6[HfCl6] is always accompanied by neighbored phases such as Te4[HfCl6] and Te8[HfCl6]. The crystal structures of Te6[ZrCl6] (orthorhombic, Pbcm, a = 1095.4(1), b = 1085.2(1), c = 1324.5(1) pm) and Te6[HfCl6] (a = 1094.8(2), b = 1086.3(2), c = 1325.0(2) pm) are isotypic and consist of one‐dimensional polymeric (Te62+)n cations and of discrete, only slightly distorted octahedral [MCl6]2‐ anions (M = Zr, Hf). The cations are build of five membered rings which are connected via single Te atoms to a polymer ‐Te‐Te5‐Te‐Te5‐. Out of the six Te atoms of the asymmetric unit of the chain four atoms exhibit two bonds and two atoms exhibit three bonds. The connecting, threefold coordinated Te atoms of the five membered rings carry formally the positive charges. In consistence with the assumption of the presence of throughout localized bonds eH band structure calculations for Te6[ZrCl6] show semiconducting behaviour with a band gap of 1.8 eV.  相似文献   

11.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

12.
Three new series of mixed-ligand clusters of the [(M6X12)X2(RCN)4] (M=Nb, Ta; X=Cl, Br; R=Et, n-Pr, n-Bu) composition have been prepared. It is supposed that four nitrile molecules and two halogen atoms are coordinated to the terminal octahedral coordination sites of the [M6X12]2+ unit.  相似文献   

13.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

14.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

15.
Dimethylsulfone reacts in the binary superacidic systems XF/MF5 (X = H, D; M = As, Sb) under the formation of the corresponding salts of the type [(CH3)2SO(OX)]+[MF6]. The salts are characterized by low temperature vibrational spectroscopy. In case of [(CH3)2SO(OH)]+[SbF6] a single‐crystal X‐ray structure analysis is reported. The salt crystallizes in the orthorhombic space group Pbca with eight formula units per unit cell [a = 10.3281(3) Å, b = 12.2111(4) Å, c = 13.9593(4) Å]. The experimental results are discussed together with quantum chemical calculations on the PBE1PBE/6‐311G++(3pd,3df) level of theory.  相似文献   

16.
Synthesis and Structure of Re43-Te)4(TeBr2)4Br8 Re43-Te)4(TeBr2)4Br8 is obtained from the elements at 550°C in an evacuated glass ampoule. The diamagnetic compound forms air-stable, metallic lustre black crystals crystallizing in the tetragonal space group I4 with a = 1120.2(2), c = 1393.5(3) pm, and Z = 2. The crystal structure is built up by isolated cluster molecules Re43-Te)4(TeBr2)4Br8 occupying the centres 4 at 1/2, 1/2, 0 and 0, 0, 1/2. The inner sceleton is formed by a Re4Te4 heterocubane unit with short Re? Re distances of 277 and 283 pm, which can be discussed as single bonds. Each Re atom coordinates in addition two Br? ligands and one TeBr2 molecule. For Re therefore results the oxidation state +IV. Reaction of Re43-Te)4(TeBr2)4Br8 with I2 yields (TeI4)4.  相似文献   

17.
While exploring the chemistry of tellurium‐containing dichalcogenidoimidodiphosphinate ligands, the first all‐tellurium member of a series of related square‐planar EII(E′)4 complexes (E and E′ are group 16 elements), namely bis(P,P,P′,P′‐tetraphenylditelluridoimidodiphosphinato‐κ2Te,Te′)tellurium(II) (systematic name: 2,2,4,4,8,8,10,10‐octaphenyl‐1λ3,5,6λ4,7λ3,11‐pentatellura‐3,9‐diaza‐2λ5,4λ5,8λ5,10λ5‐tetraphosphaspiro[5.5]undeca‐1,3,7,9‐tetraene), C48H40N2P4Te5, was obtained unexpectedly. The formally TeII centre is situated on a crystallographic inversion centre and is Te,Te′‐chelated to two anionic [(TePPh2)2N] ligands in an anti conformation. The central TeII(Te)4 unit is approximately square planar [Te—Te—Te = 93.51 (3) and 86.49 (3)°], with Te—Te bond lengths of 2.9806 (6) and 2.9978 (9) Å.  相似文献   

18.
The new ether‐bridged dipyridyl ligand 1,2‐bis[4‐(pyridin‐3‐yl)phenoxy]ethane (L) has been used to synthesize three isostructural centrosymmetric binuclear HgII macrocycles, namely bis{μ‐1,2‐bis[4‐(pyridin‐3‐yl)phenoxy]ethane‐κ2N:N′}bis[dichloridomercury(II)], [Hg2Cl4(C24H20N2O2)2], and the bromido, [Hg2Br4(C24H20N2O2)2], and iodido, [Hg2I4(C24H20N2O2)2], analogues. The Hg atoms adopt a highly distorted tetrahedral coordination environment consisting of two halides and two pyridine N‐donor atoms from two bridging ligands. In the solid state, the macrocycles form two‐dimensional sheets in the bc plane through noncovalent Hg...X and X...X (X = Cl, Br and I) interactions.  相似文献   

19.
Synthesis and Crystal Structure of the Ionic Tellurium Nitride Chloride[Te3N2Cl5(SbCl5)]+SbCl6? The title compound has been prepared by the reaction of Te2NCl5 with antimony pentachloride in CH2Cl2 suspension. It is characterized by IR spectroscopy and by a crystal structure determination. Space group P21/c, Z = 4, lattice dimensions at ?70°C: a = 1535.6, b = 1259.5, c = 1572.4 pm, β = 109.30°, R = 0.031. The compound forms an ionic pair with the central group of a (TeNCl)2 molecule in which the tellurium atoms are linked by the nitrogen atoms to give a planar Te2N2 four-membered ring. One of the nitrogen atoms is coordinated by a TeCl3+ unit, the other one by an antimony pentachloride molecule. According to the IR spectra a structure like [Te2N2Cl2(TeCl4)2] is proposed for Te2NCl5.  相似文献   

20.
Single crystals of HgII(H4TeVIO6) (colourless to light‐yellow, rectangular plates) and HgI2(H4TeVIO6)(H6TeVIO6)·2H2O (colourless, irregular) were grown from concentrated solutions of orthotelluric acid, H6TeO6, and respective solutions of Hg(NO3)2 and Hg2(NO3)2. The crystal structures were solved and refined from single crystal diffractometer data sets (HgII(H4TeVIO6): space group Pna21, Z = 4, a =10.5491(17), b = 6.0706(9), c = 8.0654(13)Å, 1430 structure factors, 87 parameters, R[F2 > 2σ(F2)] = 0.0180; HgI2(H4TeVIO6)(H6TeVIO6)·2H2O: space group P1¯, Z = 1, a = 5.7522(6), b = 6.8941(10), c = 8.5785(10)Å, α = 90.394(8), β = 103.532(11), γ = 93.289(8)°, 2875 structure factors, 108 parameters, R[F2 > 2σ(F2)] = 0.0184). The structure of HgII(H4TeVIO6) is composed of ribbons parallel to the b axis which are built of [H4TeO6]2— anions and Hg2+ cations held together by two short Hg—O bonds with a mean distance of 2.037Å. Interpolyhedral hydrogen bonding between neighbouring [H4TeO6]2— groups, as well as longer Hg—O bonds between Hg atoms of one ribbon to O atoms of adjacent ribbons lead, to an additional stabilization of the framework structure. HgI2(H4TeVIO6)(H6TeVIO6)·2H2O is characterized by a distorted hexagonal array made up of [H4TeO6]2— and [H6TeO6] octahedra which spread parallel to the bc plane. Interpolyhedral hydrogen bonding between both building units stabilizes this arrangement. Adjacent planes are stacked along the a axis and are connected by Hg22+ dumbbells (d(Hg—Hg) = 2.5043(4)Å) situated in‐between the planes. Additional stabilization of the three‐dimensional network is provided by extensive hydrogen bonding between interstitial water molecules and O and OH‐groups of the [H4TeO6]2— and [H6TeO6] octahedra. Upon heating HgI2(H4TeVIO6)(H6TeVIO6)·2H2O decomposes into TeO2 under formation of the intermediate phases HgII3TeVIO6 and the mixed‐valent HgIITeIV/VI2O6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号