首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
The density of critical currents jC in Nb thin films with thickness smaller than 15 nm and width between 100 nm and 10 μm has been measured in a wide temperature range. We have found that the temperature dependencies of jC in sub-micrometer wide bridges at 0.7TC < T < TC are well described by the Ginzburg–Landau de-pairing critical current. In wider bridges already at T < 0.9TC the jC value is significantly reduced due to the penetration and de-pinning of magnetic vortices.  相似文献   

2.
The crystal structure and exchange bias of the bulk Heusler alloys Ni50Mn50−xInx with 14.5?x?15.2 have been investigated using X-ray diffraction and magnetization measurements, respectively. Magnetic measurements were performed with SQUID magnetometry after samples were zero-field cooled and field cooled (FC) in positive magnetic fields up to H=50 kOe, from a temperature T=380 K. Three temperatures of the phase transitions, T1<TM<TC, and a shift of the FC (50 kOe) magnetic hysteresis loops up to 120 Oe at 5 K have been detected for all samples. The exchange bias field (HE) was almost constant for intermediate In concentrations 14.8<x<15.2, and sharply decreased to about 20 Oe on the borders of this concentration interval (x?14.5; 15.2?x). The changes of HE have been related to changes in the ratio of T1 to TM: the overlapping of transitions at T1 and TM (for x=14.8, and 15.2) results in a decrease in HE.  相似文献   

3.
The electrical and magnetic transport properties of the La0.67−xEuxCa0.33MnO3 system exhibit lowering of insulator to metal and paramagnetic to ferromagnetic transition temperature (TC) with the increase of Eu concentration in addition to possessing CMR property. The temperature variation of electrical resistivity and magnetic susceptibility for x=0.21 is found to have two distinct regions in the paramagnetic state for T>TP; one with the localization of lattice polaron in the high-temperature region (T>1.5TP) satisfying the dynamics of variable range hopping (VRH) model and the other being the combination of the spin and lattice polarons in the region TP<T<1.5TP. The resistivity variation with temperature and magnetic field, the cusp in the resistivity peak and CMR phenomenon are interpreted in terms of coexistence of spin and lattice small polarons in the intermediate region (TP<T<1.5TP). The spin polaron energy in the La0.46Eu0.21Ca0.33MnO3 system is estimated to be 106.73±0.90 meV and this energy decreases with the increase of external magnetic field. The MR ratio is maximal with a value of 99.99% around the transition temperature and this maximum persists till T→0 K, at the field of 8 T.  相似文献   

4.
Double layered manganite of La1.4Ca1.6Mn2O7 (DLCMO) was prepared using solid state reaction method and had a metal-insulator transition temperature (TMI) of 125 K. The short range 2D-feerromagnetic ordering (TC2) starts growing when T<168 K and it gets converted into 3D-ferromagnetic ordering (TC1) at 114 K. Low field magnetoresistance (MR) behaviour of the DLCMO was investigated and compared with an infinite layered manganite La0.7Ca0.3MnO3 (LCMO). For DLCMO, in the temperature range between TC1 and TC2, the MR showed a gradual increase with the magnetic field. The observed MR and R-T behaviour of double layered manganite for TC1<T<TC2 has been explained in the frame work of the two phase model [ferromagnetic (FM) domains and paramagnetic (PM) regions] and percolative behaviour of transport in FM-PM mixture.  相似文献   

5.
A tunable infrared diode laser was used to measure the fully resolved absorption line shape of the P(10) line in the ν1 band (10°0–00°0) of HCN for shock-heated mixtures of HCN-Ar at temperatures of 1000, 1500 and 2000 K. The temperature dependence of the collision-broadening coefficients 2γ (cm-1 atm-1, FWHM) were inferred for both self-broadening and broadening by argon. For the assumed form 2γ = 2γ0(T0/T)n the exponent n was determined to be 0.63 ± 0.06 with 2γ0 = 0.11 cm-1atm-1 and T0 = 300 K for argon-broadening in the range 300 < T < 2000 K, and 1.2 ± 0.6 with 2γ0 = 0.68 cm-1atm-1 and T0 = 1000 K for self-broadening in the range 1000 < T < 2000 K.  相似文献   

6.
We measured the heat capacity of CeIrSi3 (100 mK<T<6 K) under high pressure up to P=1.38 GPa. The measurements have been used a quasiadiabatic method utilizing a CuBe piston-cylinder pressure cell in a dilution refrigerator. At 0 GPa, a sharp anomaly which indicates the antiferromagnetically transition is observed at TN=5 K. TN decreases monotonically with increasing pressure up to P=1.38 GPa. The magnetic entropy is released below TN only 19% of R ln 2 at 0 GPa. And the magnetic entropy decreases with increasing pressure up to 1.38 GPa, 64% compared to that at 0 GPa.  相似文献   

7.
The EMF of the isothermal cells: Ag/AgI/AgxTiS2: 0<x<1, T=150–200°C/AgxNiPS3: 0<x<3, T=150–350°C has been measured. From the EMF-x curves the existence ranges of the 2-phase (stage I and II) regions ?0.16<x<0.32 for the Ag/AgxTiS2 system at 190°C; 0.20 < x < 0.50 and 1 < x < 2 for the Ag/AgxNiPS3 system at 400°C - have been determined. The results are sustained by X-ray diffraction and electrical conductivity measurements. From the EMF-T curves the partial enthalpy (ΔH?Ag) and entropy (ΔS?Ag) of dissolution of silver in the AgxSSE (solid solution electrode) materials were obtained. In the case of AgxTiS2, ΔH?Ag has a low absolute value, while ΔS?Ag is distinctly positive. The EMF of the Ag/AgxNiPS3 system also has a positive temperature coefficient. Furthermore, the ionic component of the thermoelectric power, ΔET, of the thermogalvanic cells: Ag/AgI/AgxSSE/AgI/Ag AgxTiS2: 0 < x < 1, T = 150–200°C( T ) (T+ΔT) AgxNiPS3: 0 < x < 1, T= 150–350°C has been measured. The kinetically important heat of transport of silver ions in the AgxSSE materials has been determined in two ways: first from the dependence of the ionic Seebeck coefficient (?Ag+) on reciprocal temperature; and second from direct calculation, using the data for ?Ag+ and ΔS?Ag. The heat of transport is much smaller than the activation enthalpy for Ag+-conduction, indicating a high ionic polaron binding energy in these materials.  相似文献   

8.
The Ruddlesden–Popper (RP) phase compounds (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu, Sm, Nd and La) were prepared, and their transport and thermoelectric properties were investigated. The results indicate that high-T electrical resistivity ρ (300 K<T<1000 K) increases monotonically with temperature and basically has a relation ρTM, with M varying from 0.91 to 1.92 at temperatures T>~650 K, suggesting acoustic phonon scattering is dominant. At low temperatures (5 K<T<300 K), ρ for (Sr0.95R0.05)3Ti2O7 (R=Nd and La) decreases monotonously with decreasing temperature, whereas ρ for (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu and Sm) decreases first, and then increases instead as T decreases to a critical temperature Tc. Moreover, electrical conductivity σT1/2 holds at lower temperatures, indicating that the electron–electron interaction caused by the presence of disorder dominates the transport process at the low temperatures. Besides, experiments show that at T<~400 K the lattice thermal conductivity of the doped compounds basically decreases with increase of the atomic mass of dopants. Generally, the figure of merit (ZT) at 1000 K increases first, and then decreases with the increase of the dopants' ionic radius, and the largest ZT is achieved in (Sr0.95Gd0.05)3Ti2O7 mainly owing to its lower lattice thermal conductivity.  相似文献   

9.
The spin dependence of π0 inclusive production by 24 GeV/c protons has been measured using a polarized target for Fhe Feynman x near 0 in the transverse momentum range 1.0 < pT < 2.5 GeV/c. The results indicate a negative updown asymmetry growing strongly with pT and greater than 50% in absolute value for pT greater than 2 GeV/c.  相似文献   

10.
In order to study the mechanism behind the phase separation scenario in the Sm0.15Ca0.85MnO3 compound, magnetization and resistivity measurements have been carried out in pulsed magnetic fields up to 50 T at temperatures 4.2 K<T<200 K. It is found that external magnetic field causes a collapse of a C-type AFM (P21/m) phase resulting in field-induced insulator-metal transition, which is irreversible below T1=75 K. In zero field the content of a G-type phase in the mixed C-G state can vary from 10 to 17% at T=10 K. A set of metastable states with different volume ratios of G-type to C-type phases is observed below T1 depending on the history of the sample. The obtained results indicate that the phase separation plays a dominant role for the electric and the magnetic properties of this material.  相似文献   

11.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

12.
CeAgAs2, an HfCuSi2 like layered pnictide, orders antiferromagnetically at TN=6.2(1) K. The ordering process was monitored in neutron diffraction experiments in the temperature range 10 K≥T≥3.5 K. At T=4 K the lattice parameters are a=5.7438(1) Å, b=5.7696(1) Å and c=21.0067(2) Å. The diffraction pattern of the antiferromagnetic phase with a propagation vector k=[0,0,0] point towards ferromagnetically ordered moments in Ce layers stacked along [001], the individual layers are coupled antiferromagnetically with a +− −+type sequence. The alignment of moments within the Ce layers cannot be determined reliably from the experimental data so that two different structure models are discussed. The proposed metamagnetic transition was confirmed by diffraction experiments applying an external magnetic field at T<TN. In the interval 4 K≤T≤6 K, a relatively small field of μ0H≈0.3 T suffices to fully suppress the antiferromagnetic ordering. The effect is completely reversible yet subject to hysteresis: After switching off the external field at any T<TN the magnetic reflections gain their original intensity within several 10 min indicating the restoring of the antiferromagnetic phase.  相似文献   

13.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

14.
We evidenced an early-stage ordering (ESO) in Fe51Pt49 film before the appearance of superlattice diffraction (long-range-order, LRO) using 40-nm-thick films prepared by magnetron sputtering onto quartz substrate. The appearance of L10 phase for samples deposited at substrate temperatures (Ts) 400 °C and higher was verified by X-ray diffraction. Surface roughness of Fe51Pt49 films, obtained via X-ray specular reflectivity with computational fitting, increases from 3.8 to 11 Å as Ts is increased from 25 to 275 °C. As further increase of Ts to 375 °C, the roughness drops to 3.2 Å and then increases again to 38 Å with Ts up to 700 °C. Measurement on residual strain demonstrates that it is initially compressive at Ts<400 °C. Thereafter the strain transfers to a tensile one and increases in magnitude as increasing Ts up to 700 °C corresponding to LRO transformation. Local atomic rearrangement is observed for samples deposited at Ts>250 °C by using extended X-ray absorption fine structure. Coercivity of films increases from 10 to 460 Oe as Ts increase from 25 to 375 °C (ESO) and then from 460 to 10,700 Oe with Ts 375-700 °C (normal LRO). The worked out quantitative estimation of ESO engages with that of LRO before Ts 400 °C.  相似文献   

15.
The temperature-dependent resistivity and thermoelectric power of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets (x=0.05, 0.10 and 0.15) between 50 and 300 K are reported. K substitution enhances the conductivity of this system. Curie temperature (TC) also increases from 260 to 309 K with increasing K content. In the paramagnetic region (T>TC), the electrical resistivity is well represented by adiabatic polaron hopping, while in the ferromagnetic region (T<TC), the resistivity data show a nearly perfect fit for all the samples to an expression containing, the residual resistivity, spin-wave and two-magnon scattering and the term associated with small-polaron metallic conduction, which involves a relaxation time due to a soft optical phonon mode. Small polaron hopping mechanism is found to fit well to the thermoelectric power (S) data for T>TC whereas at low temperatures (T<TC) in ferromagnetic region (SFM), SFM is well explained with the spin-wave fluctuation and electron–magnon scattering. Both, resistivity and thermopower data over the entire temperature range (50–300 K) are also examined in light of a two-phase model based on an effective medium approximation.  相似文献   

16.
The effect of ion irradiation on the superconducting transition temperatureT c and resistivityρ ab (T) of YBa2Cu3O7-x films with different oxygen content (initial temperatureT c0≈90 K and 60 K) is studied experimentally. The dependenciesT c /T c0 on residual resistivityρ o are obtained in very wide range 0.2<T c /T c0 <1 andρ o μΩ·cm. The critical values ofρ o , corresponding to the vanishing of superconductivity, are found to be an order of magnitude larger then those predicted by theory ford-wave pairing. At 0.5÷0.6<T c /T c0<1 the experimental data are in close agreement with theoretical dependencies, obtained for the anisotropics-wave superconductor within the BCS-framework.  相似文献   

17.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

18.
Hafnium oxide (HfO2) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(1 0 0) substrates under varying growth temperature (Ts). HfO2 ceramic target has been employed for sputtering while varying the Ts from room temperature to 500 °C during deposition. The effect of Ts on the growth and microstructure of deposited HfO2 films has been studied using grazing incidence X-ray diffraction (GIXRD), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive X-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO2 films. Structural characterization indicates that the HfO2 films grown at Ts < 200 °C are amorphous while films grown at Ts > 200 °C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts = 200 °C. Nanocrystalline HfO2 films crystallized in a monoclinic structure with a (−1 1 1) orientation. An interface layer (IL) formation occurs due to reaction at the HfO2-Si interface for HfO2 films deposited at Ts > 200 °C. The thickness of IL increases with increasing Ts. EDS at the HfO2-Si cross-section indicate that the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts. The current-voltage characteristics indicate that the leakage current increases significantly with increasing Ts due to increased ILs.  相似文献   

19.
We report on the structural, frequency dependent ac susceptibility, dc magnetization and magnetoresistance (MR) measurements on polycrystalline samples of La0.9Ca0.1Mn1−yCryO3 (y=0, 0.1 and 0.2) prepared by sol-gel technique. For y=0, a paramagnetic to ferromagnetic transition is observed at Tc=136 K. Both for y=0.1 and 0.2, Tc increases from 136 to 180 K. For y=0, the imaginary part of the ac susceptibility shows a broad transition at Tf<Tc which does not depend very much on the frequency. However, for y=0.1 and 0.2, the frequency dependence resembles that of a spin glass. Though all the three samples show a semi-conducting behavior between 300 and 5 K, a negative MR is observed corresponding to Tc and Tf. The value of MR decreases for the Cr substituted samples.  相似文献   

20.
Isothermal magnetization near a fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 4000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with temperature T and is independent of applied magnetic field H. The results of J(t) and Ueff (T, H) are consistent with the Anderson–Kim flux–creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. Ueff at a fishtail peak field Hfp evolves quickly above a fishtail peak temperature Tfp, but slowly below that temperature. The result suggests that a decrease of flux viscosity coefficient above Tfp at Hfp is the origin of the fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号