共查询到20条相似文献,搜索用时 15 毫秒
1.
Weiya Lai Wenzhen Zhao Feng Wang Chengzhu Qi Jun Zhang 《Surface and interface analysis : SIA》2009,41(6):531-539
Electrochemical impedance spectroscopy (EIS) and Kramers–Kronig (K–K) transforms were made on American Iron and Steel Institute (AISI) 304 stainless steel (SS) in naturally aerated sulfuric acid solution at room temperature. The K–K relations testify that the systems under investigation comply with the linearity, causality, and stability constraints of linear system theory (LST) and thereby validate the EIS data. The polarization resistance decreased with removing of passive film and pitting formed in the passive layer, due to layer thinning or pitting caused by chloride. The impedance data for 304 SS with passive films can be accurately modeled using individual components of the equivalent circuits. The polarization resistances (Rp) of the 304 SS can be confirmed by Nyquist plots and estimated from the anodic polarization curves. The reaction model of the dissolution‐passivation process of 304 SS in acid solution is proposed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
The corrosion behaviours of austenitic stainless steels were investigated by electrochemical methods under plastic deformation with constant strain in the naturally aerated 0.5 M H2SO4 + 0.2 M KCl solution at room temperature. The work addresses the influence of plastic deformation and molybdenum element on the corrosion resistance of austenitic stainless steels in the test solution. Electrochemical impedance spectroscopy presents the decreasing charge transfer resistance (Rt) and polarization resistance (Rp) values with the immersion time for AISI 304 stainless steel under constant strain deformation, and the increasing Rt and Rp values with the immersion time for AISI 316 stainless steel. The analysis of the chemical composition of the corrosion products was carried out by XPS. Molybdenum addition in AISI 316 stainless steel affects significantly the corrosion resistance because of its high ability to form Mo (VI) and MoCl5 insoluble compounds in acid medium. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
C. Rubio D. Costa M. N. Bellon-Fontaine P. Relkin C. M. Pradier P. Marcus 《Colloids and surfaces. B, Biointerfaces》2002,24(3-4):193-205
Adsorption of BSA on the surface of chromium and 304 stainless steel, has been characterized by Contact Angle Measurements, X-ray Photoelectron Spectroscopy (XPS) and Infrared Reflection Absorption Spectroscopy (IRRAS). Bacterial adhesion has been tested and compared on these two materials before and after pre-conditioning the surface with BSA. Chromium and stainless steel surfaces, when covered by a natural oxide layer, exhibit different energetic characteristics as shown by their γs- and γsLW respective values. These data vary upon immersion in BSA solutions, tending towards common values for duration of immersions. After immersion in BSA solutions, the evolution of the N 1s XPS signal, specific for the BSA, suggests that the surface is nearly saturated in a few minutes. Longer times of immersion only lead to a re-ordering of the adsorbed layer. Immersion tests in dilute BSA solutions (0.01 g/l) enabled us to make clear a higher reactivity of chromium towards the protein compared to stainless steel. These differences are cancelled at higher BSA concentrations (1 g/l). IRRAS spectra of BSA adsorbed on the two substrates demonstrated the appearance of amide I and amide II bands with small shifts and intensity variations supporting orientation changes of the protein when the concentration or immersion time varies. A model for the building up of the BSA layer is proposed, which accounts for these data. Chromium and stainless steel surfaces, also have different behaviours towards adhesion of Pseudomonas fragi K1, whereas surfaces that are pre-conditioned by BSA behave in a similar way. The overall number of adherent bacteria is decreased on stainless steel, whereas it is hardly affected on chromium. On both surfaces, the fraction of viable cells is increased. 相似文献
4.
Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high‐current density electropolishing 下载免费PDF全文
Krzysztof Rokosz Frank Simon Tadeusz Hryniewicz Sławomir Rzadkiewicz 《Surface and interface analysis : SIA》2015,47(1):87-92
In the paper, there are described chemical compositions of passive surface layers formed on AISI 304 L (EN 1.4307) stainless steel after standard (EP50; i = 50 A/dm2) and high‐current density (EP1000; i = 1000 A/dm2) electropolishing. For the studies, a mixture of orthophosphoric and sulfuric acid electrolyte in proportion 1:4 was used. The survey and high‐resolution spectra of Cr 2p, Fe 2p, S 2p, P 2p, Ni 2p and C 1s are presented. On the basis of the obtained results it was noted that the chromium‐to‐iron ratio (Cr/Fe) after EP50 was about 3.5 times higher than that after EP1000 treatment. The phosphorus‐to‐sulfur ratios after EP50 and EP1000 electropolishing were 0.13 and 0.3, respectively, and nickel to the sum of chromium and iron coefficient (Ni/Cr + Fe) for both electrochemical polishing was equal to 0.04. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
The effect of different Cu addition on the electrochemical and passivation behaviour of the 304 series stainless steel in 0.1 M phosphoric acid solution was evaluated by the potentiodynamic measurements and electrochemical impedance spectrum (EIS). The effect of Cu on chemical composition of the passive film formed in the solution was also studied by X‐ray photoelectron spectroscopy (XPS). The results indicated that Cu did not appreciably improve the corrosion resistance of the passive film, but enhanced the passivation, lowered the critical and passive current density. The passive and critical current density decreased with Cu content increased. The presence of Cu in the passive film affects passive film stability. Cu can modify the proportion of Cr element in the passive film, and also change the components of Fe in the passive film. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
The fine microstructure of the passive films on nanocrystalline (NC) and coarse crystalline (CC) 304 stainless steels (SSs) in 0.5 M H2SO4 were investigated by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The results indicate that the passive film on both CC and NC SSs exhibits a two-layer microstructure consisting of a compact inner layer and a porous outer layer. Some hydrated compounds (HC) were present in the porous outer layer of NC SS but not CC SS in 0.5 M H2SO4 solution. The pores in the outer layer of the NC SS were observed to be in the nanoscale by AFM. HC filling of the pores in the passive film on NC SS may occur due to capillary forces endowed by the nanosize pores. XPS analysis of the passive films on both CC and NC SSs, however, does not show such a composition difference which is attributed to dehydration occurring in the XPS vacuum chamber. Both the inner and outer layers of the NC SS were determined by EIS analysis to be more compact and protective than the corresponding films on CC SS as evidenced by the lower Q value, higher n, and much higher R value in the corresponding layer. 相似文献
7.
Djordje Mandrino Martin Lamut Matjaž Godec Matjaž Torkar Monika Jenko 《Surface and interface analysis : SIA》2007,39(5):438-444
Protective surface layers on AISI 321 stainless steel were prepared by thermal treatments at two different temperatures in air and two controlled atmospheres. Different oxide and/or nitride layers were formed. Surface morphology of the layers was investigated by scanning electron microscopy (SEM). Auger electron spectroscopy (AES) depth profiling of the samples was performed. Since depth profiling suggested layer thicknesses of the order of hundreds of nanometres, an attempt was made to obtain some fast, averaged information about the layer compositions using wavelength dispersive spectroscopy (WDS) at two different beam energies to obtain probing depths best suited to the layer thickness. X‐ray photoelectron spectroscopy (XPS) profiling of one layer was also performed to obtain information about the chemical states of the elements inside the layer. The analysed samples showed considerable differences with respect to their surface morphology, oxide/nitride layer thicknesses, compositions and layer–metal interface thickness. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
8.
The valence band and core‐level X‐ray photoelectron spectroscopy was used to probe hydroxyapatite films formed on the surface of stainless steel. These films formed on steel may find application in medical implants. The key to the successful adhesion of the hydroxyapatite films is shown to be the initial formation of a thin, oxide‐free etidronate film on the metal. It was not found possible to prepare the hydroxyapatite films directly on the metal surfaces. Since hydroxyapatite is a key component of bone and teeth, it is likely that the coated metals will have desirable biocompatible properties. The hydroxyapatite film was exposed to air, water, and 1M sodium chloride solution as representative components of the environment of the film in the human body, and these exposures led to no detectable decomposition of the film. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of the peaks in some core level spectra. The valence band spectra proved especially valuable in the identification of the surface chemistry of the films, and these spectra were interpreted by comparing the experimental spectra with spectra calculated using band structure calculations which showed good agreement with experiment. The calculated spectrum of etidronic acid was found to be significantly different to that of etidronate. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
Nitrogen uptake of nickel free austenitic stainless steel powder during heat treatment—an XPS study 下载免费PDF全文
Anna Weddeling Kathrin Lefor Eduard Hryha Stephan Huth Lars Nyborg Sebastian Weber Werner Theisen 《Surface and interface analysis : SIA》2015,47(3):413-422
In austenitic stainless steel nitrogen stabilizes the austenitic phase, improves the mechanical properties and increases the corrosion resistance. Nitrogen alloying enables to produce austenitic steels without the element nickel which is high priced and classified as allergy inducing. A novel production route is nitrogen alloying of CrMn‐prealloyed steel powder via the gas phase. This is beneficial as the nitrogen content can be adjusted above the amount that is reached during conventional casting. A problem which has to be overcome is the oxide layer present on the powder surface which impedes both the sintering process and the uptake of nitrogen. This study focuses on whether heat treatment under pure nitrogen is an appropriate procedure to enable sintering and nitrogen uptake by reduction of surface oxides. X‐ray photoelectron spectroscopy (XPS) in combination with scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometry (EDS) are used to investigate the surface of powdered FeMn19Cr17C0.4N heat treated under nitrogen atmosphere. The analyses showed reduction of iron oxides already at 500 °C leading to oxide‐free metallic surface zones. Mn and Cr oxides are reduced at higher temperatures. Distinct nitrogen uptake was registered, and successful subsequent sintering was reached. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
11.
Julien Huser Sophie Bistac Christelle Delaite Didier Dentel Mickaël Derivaz Mohamed Zanouni 《Surface and interface analysis : SIA》2015,47(4):523-528
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Corrosion resistances of passive films on low‐Cr steel and carbon steel in simulated concrete pore solution 下载免费PDF全文
Ming Liu Xuequn Cheng Gucheng Zhao Xiaogang Li Yue Pan 《Surface and interface analysis : SIA》2016,48(9):981-989
The passive ranges of carbon steel rebar and 3Cr steel rebar in saturated Ca(OH)2‐simulated concrete pore solution with pH 12.6 were determined by means of cyclic voltammetry and potentiodynamic polarization curves. Chronopotentiometry was used to obtain steady‐state conditions for the formation of passive films on rebar samples at different anodic potentials. Electrochemical impedance spectroscopy, Mott–Schottky and X‐ray photoelectron spectrometer curves were employed to compare the formed passive films at different potentials. Additionally, cyclic polarization curves were used to compare the corrosion resistances of formed passive films on the two rebars in saturated Ca(OH)2‐simulated concrete pore solution with different concentration of Cl?. The results show that the passive ranges of the two rebars are all between ?0.15 and +0.6 V, and more stable passive films can be formed on both rebars at the anodic potential of +0.3 V. In the absence of Cl?, the stability and corrosion resistance of the passive film formed on the 3Cr rebar are better than those of CS rebar. The passive film of 3Cr steel has the relatively better pitting corrosion resistance than carbon steel in saturated Ca(OH)2‐simulated concrete pore solution that contains different concentration of Cl?. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
《Surface and interface analysis : SIA》2004,36(1):8-16
Zirconia (ZrO2) films of tissue‐like structure and narrow pore size distribution have been deposited by spray pyrolysis using aqueous zirconyl chloride octahydrate (ZrOCl2·8H2O) precursor solutions. Stainless‐steel sheets, protected or unprotected by a ZnO barrier layer, have been used as the substrate material held at 473 K. The ZnO barrier layers have been deposited on the stainless steel held at 523 K by spray pyrolysis using a zinc acetate precursor. Their property of corrosion protection to stainless steel has been proved by electrochemical polarization measurements in 0.5 M NaCl solution. A complementary study of XPS (depth profiling, mapping) and x‐ray diffraction has shown that the unprotected steel substrates were corroded during ZrO2 film post‐annealing in air at T ≥ 773 K, whereas steel substrates protected with a compact barrier layer of crystalline ZnO before ZrO2 film deposition did not show surface corrosion even after annealing up to 997 K. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
14.
The electrochemical behavior of austenitic stainless steel (Type 304) in 3 M sulfuric acid with 3.5% recrystallized sodium chloride at specific concentrations of butan-1-ol was investigated with the aid of potentiodynamic polarization, open circuit measurement and weight loss technique. Butan-1-ol effectively inhibited the steel corrosion with a maximum inhibition efficiency of 78.7% from weight-loss analysis and 80.9% from potentiodynamic polarization test at highest concentration studied. Adsorption of the compound obeyed the Freundlich isotherm. Thermodynamic calculations reveal physiochemical interactions and spontaneous adsorption mechanism. Surface characterizations showed the absence of corrosion products and topographic modifications of the steel. Statistical analysis depicts the overwhelming influence and statistical significance of inhibitor concentration on the inhibition performance. 相似文献
15.
Pitting behavior on super 13Cr stainless steel in 3.5% NaCl solution in the presence of acetic acid 总被引:1,自引:0,他引:1
Z. F. Yin W. Z. Zhao W. Tian Y. R. Feng C. X. Yin 《Journal of Solid State Electrochemistry》2009,13(8):1291-1296
The pitting behavior was investigated on super 13Cr stainless steels in 3.5% NaCl solution in the presence of HAc. The electrochemical
measurements including potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and chronoamperometric
experiments were carried out, as well as the SEM surface analysis. The parameters such as E
corr and I
corr were obtained by fitting technique. Moreover, the equivalent circuit model was applied in the analysis of Nyquist plots,
and ZsimWin software was used to analyze the EIS data. The results indicate that the pitting corrosion is accelerated with
increasing the amounts of HAc. In addition, pitting nucleation and growth mechanisms were described in this work. 相似文献
16.
Imidazopyridine derivatives, namely 4‐methoxy‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3‐yl)methylene)benzenamine (MMPIPB) and 4‐chloro‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3yl)methylene)benzenamine (CMPIPB), were investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss and electrochemical techniques. According to electrochemical impedance spectroscopy studies, MMPIPB and CMPIPB show corrosion inhibition efficiency of 84.8 and 77.2% at 10‐ppm concentration and 98.1 and 94.8% at 80‐ppm concentration, respectively at 303 K. The corrosion inhibition efficiency of both inhibitors increased with increasing inhibitor concentration and decreased with increasing temperature. The adsorption of both inhibitor molecules on the surface of mild steel obeys Langmuir adsorption isotherm. Polarization studies showed that both studied inhibitors were of mixed type in nature. Electrochemical impedance spectroscopy studies showed that for both inhibitors, the value of charge transfer resistance increased and double‐layer capacitance decreased on increasing the concentration of inhibitors. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy (EDX), and atomic force microscopy were performed for surface study. The density functional theory was employed for theoretical calculations. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
The effect of Sn content on properties of anodic film formed on PbSn alloys in sulfuric acid solution was investigated using linear sweeping voltage (LSV), cyclic voltammetry (CV), and a.c. voltammetry (ACV), based on the Mott-Schottky analysis. The results revealed that the addition of Sn into lead alloys can promote the corrosion resistance property and could decrease the impedance of anodic film; these results were more remarkable with enhancing the Sn content. The over potential of oxygen evolution on lead alloys enhanced with the increase of Sn content. The Mott-Schottky analysis indicated that the passive film appeared an n-type semiconductor, and the donor density of passive film increased with increasing Sn content. The increased vacancies in the passive film with Sn content increasing could illustrate this trend. 相似文献
18.
Electrochemical copolymerization of phenol and aniline was achieved on 304 stainless steel anodes in neutral water solution with an electrolyte of Na2SO4O4. Compared with pit corro-sion potential of different copolymer coatings, the best solution composition was 0.09 mol/L phenol and 0.01 mol/L aniline. Through infrared spectrum analysis, polyaniline structure was proved in phenol-aniline copolymer, as well as more side chains. Scanning electron mi-croscope was used to analyze microstructure of copolymer coating, taking advantage of part solubility of phenol-aniline copolymer in tetrahydrofuran, the bifurcate network structure was observed. The copolymer coating microstructure was summarized, compared with the performance of polyphenol coatings, the reasons of corrosion resistance enhancement with the addition of aniline in electropolymerization reaction was assumed as well. 相似文献
19.
《Surface and interface analysis : SIA》2006,38(8):1218-1222
The electrochemical behavior of the anode of the galvanic couple and the adsorption behavior of the cationic inhibitor on it have been investigated by using electrochemical methods, atomic force microscopy (AFM) and infrared spectroscopy (FTIR) technology. A galvanic electrode was prepared by coupling N80 carbon steel (CS) and S31803 stainless steel. All experiments were performed in NaCl solution in the presence or absence of an inhibitor. The results show that, in aqueous NaCl solution, CS carries negative excess charge, for the couple, positive charge is carried on the CS side (anode). The adsorption behavior of the cationic inhibitor on CS is significantly affected by the excess charge carried on it. Owing to the charge interaction between electrodes and the cationic inhibitor, the inhibitor has a greater tendency to adsorb on the single CS and less tendency to adsorb on the CS of the couple. Because of this, the adsorption film on the anode (CS side) of the couple is thin and defective. The failure of inhibiting galvanic corrosion attributes to the defective protective layer formed on the anodic area. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
20.
P. Jussila H. Ali‐Löytty K. Lahtonen M. Hirsimäki M. Valden 《Surface and interface analysis : SIA》2010,42(3):157-164
The adsorption of 3‐aminopropyltrimethoxysilane thin films on Fe? 18Cr? 7Mn? 3Ni (austenitic stainless steel) was investigated by X‐ray photoelectron spectroscopy (XPS) and inelastic electron background analysis. The bonding and morphology of the films were strongly dependent on the surface hydroxyl concentration, which was controlled by the oxidation pretreatment of the substrate. In particular, an aminopropylsilane (APS) monolayer with high degree of bonding to the substrate was obtained on an electrochemically passivated surface with very high hydroxyl concentration. On the other hand, the deposition of weakly bound APS clusters was observed on substrates having relatively low hydroxyl concentrations. The adsorption occurred initially via hydrogen bonding, whereas heating to 373 K resulted in the formation of covalent Si? O? M bonds at the silane/metal oxide interface. The results of this study provide insight into the interaction between silanes and stainless steels surfaces, and can be applied for functionalization of stainless steel materials in an extensive range of applications. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献