首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The compounds Ln2AuP3 were synthesized by reaction of the elemental components in evacuated silica tubes. Their crystal structures were determined from single‐crystal diffractometer data. The compounds with Ln = La, Ce, and Pr crystallize with an orthorhombic U2NiC3 type structure (Pnma, Z = 4). The structure refinement for Ce2AuP3 resulted in a = 774.14(6) pm, b = 421.11(4) pm, c = 1612.3(1) pm, R = 0.019 for 1410 structure factors and 38 variable parameters. For Pr2AuP3 a residual of R = 0.024 was obtained. Nd2AuP3 crystallizes with a monoclinic distortion of this structure: P21/c, Z = 4, a = 416.14(4) pm, b = 768.87(6) pm, c = 1647.1(2) pm, β = 104.06(1)°, R = 0.022 for 1361 F values and 56 variables. The near‐neighbor coordinations of the two structures are nearly the same. In both structures the gold and phosphorus atoms form two‐dimensionally infinite nets, where the gold atoms are tetrahedrally coordinated by phosphorus atoms with Au–P distances varying between 245.8 and 284.2 pm. Two thirds of the phosphorus atoms form pairs with single‐bond distances varying between 217.7 and 218.9 pm. Thus, using oxidation numbers the structures can be rationalized with the formulas (Ln+3)2[AuP3]–6 and (Ln+3)2Au+1(P2)–4P–3. Accordingly, La2AuP3 is a diamagnetic semiconductor. Pr2AuP3 is semiconducting with an antiferromagnetic ground state, showing metamagnetism with a critical field of Bc = 0.5(± 0.1) T. In contrast, the cerium compound is a metallic conductor, even though its cell volume indicates that the cerium atoms are essentially trivalent, as is also suggested by the ferro‐ or ferrimagnetic behavior of the compound.  相似文献   

2.
La3OCl[AsO3]2: A Lanthanum Oxide Chloride Oxoarsenate(III) with a “Lone‐Pair” Channel Structure La3OCl[AsO3]2 was prepared by the solid‐state reaction between La2O3 and As2O3 using LaCl3 and CsCl as fluxing agents in evacuated silica ampoules at 850 °C. The colourless crystals with pillar‐shaped habit crystallize tetragonally (a = 1299.96(9), c = 558.37(5) pm, c/a = 0.430) in the space group P42/mnm (no. 136) with four formula units per unit cell. The crystal structure contains two crystallographically different La3+ cations. (La1)3+ is coordinated by six oxygen atoms and two chloride anions in the shape of a bicapped trigonal prism (CN = 8), whereas (La2)3+ carries eight oxygen atoms and one Cl? anion arranged in the shape of tricapped trigonal prism (CN = 9). The isolated pyramidal [AsO3]3? anions (d(As–O) = 175–179 pm) consist of three oxygen atoms (O2 and two O3), which surround the As3+ cations together with the free, non‐binding electron pair (lone pair) Ψ1‐tetrahedrally (?(O–As–O) = 95°, 3×). One of the three crystallographically independent oxygen atoms (O1), however, is exclusively coordinated by four (La2)3+ cations in the shape of a real tetrahedron (d(O–La) = 236 pm, 4×). These [(O1)(La2)4]10+ tetrahedra form endless chains in the direction of the c axis through trans‐edge condensation. Empty channels, constituted by the lonepair electrons of the Cl? anions and the As3+ cations in the Ψ1‐tetrahedral oxoarsenate(III) anions [AsO3]3?, run parallel to [001] as well.  相似文献   

3.
Colourless crystals of [Hg2(Mmt)(Dmt)2](NO3)(H2O) were obtained from a reaction of mercuric nitrate with monomethyl‐ and dimethyl‐1,2,4‐triazolate (Mmt? and Dmt?, respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4), b = 1231.1(2), c = 1634.8(2) pm, β = 128.32(1)°, V = 4073.3(11)·106·pm3, Z = 8, R1 [I0 > 2σ(I0)]: 0.0355), half of the mercuric ions are essentially two‐coordinate (Hg–N: 210‐215 pm), the other half are tetrahedrally surrounded by N‐donor atoms (Hg–N: 221, 225 pm) of the Mmt? and Dmt? anions. These three‐N ligands construct a three‐dimensional framework.  相似文献   

4.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

5.
Single crystals of [Gd(OH)(H2O)(b18c6)]I(I3)(CH3CN) were obtained from an acetonitrile solution of GdI3, I2 and benzo‐18‐crown‐6. The crystal structure (monoclinic, P21/a (no. 14), Z = 4, a = 1233.8(1) pm, b = 1925.0(2) pm, c = 1252.3(1) pm, β = 104.375(7)°) contains hydroxide bridged cationic dimers and iodide as well as triiodide as anions.  相似文献   

6.
7.
On the H‐ and A‐Type Structure of La2[Si2O7] By thermal decomposition of La3F3[Si3O9] at 700 °C in a CsCl flux single crystals of a new form of La2[Si2O7] have been found which is called H type (triclinic, P1; a = 681.13(4), b = 686.64(4), c = 1250.23(8) pm, α = 82.529(7), β = 88.027(6), γ = 88.959(6)°; Vm = 87.223(9) cm3/mol, Dx = 5.113(8) g/cm3, Z = 4) continuing Felsche's nomenclature. It crystallizes isotypically to the triclinic K2[Cr2O7] in a structure closely related to that of A–La2[Si2O7] (tetragonal, P41; a = 683.83(7), c = 2473.6(4) pm; Vm = 87.072(9) cm3/mol, Dx = 5.122(8) g/cm3, Z = 8). For comparison, the latter has been refined from single crystal data, too. Both the structures can be described as sequence of layers of each of two crystallographically different [Si2O7]6– anions always built up of two corner‐linked [SiO4] tetrahedra in eclipsed conformation with non‐linear Si–O–Si bridges (∢(Si–O–Si) = 128–132°) piled up in [001] direction and aligned almost parallel to the c axis. They differ only in layer sequence: Whereas the double tetrahedra of the disilicate units are tilted alternating to the left and in view direction ([010]; stacking sequence: AB) in H–La2[Si2O7], after layer B there follow due to the 41 screw axis layers with anions tilted to the right and tilted against view direction ([010]; stacking sequence: ABA′B′) in A–La2[Si2O7]. The extremely irregular coordination polyhedra around each of the four crystallographically independent La3+ cations in both forms (H and A type) consist of eight to ten oxygen atoms in spacing intervals of 239 to 330 pm. The possibility of more or less ordered intermediate forms will be discussed.  相似文献   

8.
Phosphoraneiminato‐Acetato Complexes of Cobalt and Cadmium with M4N4 Heterocubane Structure The phosphoraneiminato‐acetato complexes [M(NPEt3)(O2C–CH3)]4 with M = Co and Cd are formed from the anhydrous metal(II) acetates with excess Me3SiNPEt3 at 180 °C. By crystallization from diethyl ether blue, moisture sensitive single crystals of [Co(NPEt3) · (O2C–CH3)]4 can be obtained, while colourless single crystals of [Cd(NPEt3)(O2C–CH3)]4 · 2 CH2Cl2 originate from dichloromethane solution. In vacuo the intercalary CH2Cl2 is released. The complexes are characterized by their IR spectra and by crystal structure analyses. In both complexes the metal atoms are associated via μ3–N bridges of the (NPEt3) groups to form heterocubanes. In the cobalt complex the acetato ligands are bonded in a semichelate fashion with a short Co–O and a long Co–O bond each (Co–O distances in average 199.5 and 257.4 pm). In the cadmium complex the acetato groups form almost symmetrical chelates (Cd–O distances in average 232.1 and 237.8 pm); this leads to a distorted trigonal‐bipyramidal arrangement at the cadmium atoms. [Co(NPEt3)(O2C–CH3)]4: Space group P 1, Z = 4, lattice dimensions at –60 °C: a = 1110.1(2), b = 2051.3(5), c = 2169.5(4) pm, α = 100.03(2)°, β = 103.404(15)°, γ = 97.63(2)°, R = 0.0480. [Cd(NPEt3)(O2C–CH3)]4 · 2 CH2Cl2: Space group C2/c, Z = 4, lattice dimensions at –80 °C: a = 1550.2(1), b = 2101.1(1), c = 1706.1(1) pm, β = 91.09(1)°, R = 0.0311.  相似文献   

9.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

10.
La2NiBi was synthesized by heating a cold pressed pellet of the elements in a sealed and evacuated silica tube at 1070 K. The structure was determined via powder and single crystal X‐ray diffraction. La2NiBi crystallizes orthorhombically, in the space group Pnma: a = 838.88(6), b = 455.61(11), c = 1210.4(2) pm and V = 0.46261(14) nm3 (wR = 0.1002, 1001 F2 values, 26 variables, Z = 4). La2NiBi represents a higher congener of La2NiSb and adopts a ternary ordered version of the Bi3Ni structure type. Similar to La2NiSb, the nickel atoms form infinite zigzag chains (259 pm Ni–Ni) with trigonal‐prismatic lanthanum coordination. One rectangular face of the lanthanum prism is capped by a bismuth atom (333.08–364.74 pm La–Bi, 281.18 pm Ni–Bi). These zigzag chains run along the b axis. DFT based band structure calculations and DOS representations suggest metallic behavior. This was confirmed via temperature dependent impedance spectroscopic measurements. A Seebeck coefficient of –10 μV · K–1 in the temperature range up to 873 K substantiates this finding. Thermal analyses show that the compound is stable up to 873 K under inert gas conditions and degrades at higher temperatures. The magnetic measurements show almost no grain boundary nickel impurities characterizing La2NiBi as a weak Pauli paramagnet.  相似文献   

11.
The title compounds were prepared by reacting the elements in an arc‐melting furnace and subsequent annealing. The LaRuSn3 type structure of the new compounds LnPtIn3 (Ln = La, Ce, Pr, Nd, Sm) was refined from single crystal X‐ray data for LaPtIn3: Pm3n, a = 980.4(2) pm, wR2 = 0.0271, 399 F2 values, 15 variables. Striking structural motifs of LaPtIn3 are condensed distorted trigonal [PtIn6] prisms with Pt–In distances of 269 pm. The lanthanum atoms occupy large cavities within the polyhedral network. Besides Pt–In bonding In–In bonding also plays an important role in LaPtIn3 with In–In distances of 299 and 327 pm. The La1 position is occupied only to 91%, resulting in a composition La0.98(1)PtIn3. The La1 atoms show an extremely large displacement parameter indicating a rattling of these atoms in the In12 cages. The so far most indium rich compound in the ternary system lanthanum‐platinum‐indium is LaPtIn4 which was characterized on the basis of Guinier powder data: YNiAl4‐type, Cmcm, a = 455.1(2) pm, b = 1687.5(5) pm, and c = 738.3(2) pm. The platinum atoms in LaPtIn4 center trigonal prisms with the composition [La2In4]. Together with the indium atoms the platinum atoms form a complex three‐dimensional [PtIn4] polyanion in which the lanthanum atoms occupy large hexagonal tubes. The structure of Ce2Pt2In is confirmed: Mo2FeB2‐type, P4/mbm, a = 779.8(1) pm, c = 388.5(1) pm, wR2 = 0.0466, 433 F2 values, 12 parameters. It is built up from CsCl and AlB2 related slabs with the compositions CeIn and CePt2, respectively. Chemical bonding in the [PtIn3] and [PtIn4] polyanions of LaPtIn3 and LaPtIn4 is discussed.  相似文献   

12.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

13.
14.
Sulfates and Hydrogensulfates of Erbium: Er(HSO4)3-I, Er(HSO4)3-II, Er(SO4)(HSO4), and Er2(SO4)3 Rod shaped light pink crystals of Er(HSO4)3-I (orthorhombic, Pbca, a = 1195.0(1) pm, b = 949.30(7) pm, c = 1644.3(1) pm) grow from a solution of Er2(SO4)3 in conc. H2SO4 at 250 °C. From slightly diluted solutions (85%) which contain Na2SO4, brick shaped light pink crystals of Er(HSO4)3-II (monoclinic, P21/n, a = 520.00(5) pm, b = 1357.8(1) pm, c = 1233.4(1) pm, β = 92.13(1)°) were obtained at 250 °C and crystals of the same colour of Er(SO4)(HSO4) (monoclinic, P21/n, a = 545.62(6) pm, b = 1075.6(1) pm, c = 1053.1(1) pm, β = 104.58(1)°) at 60 °C. In both hydrogensulfates, Er3+ is surrounded by eight oxygen atoms. In Er(HSO4)3-I layers of HSO4 groups are connected only via hydrogen bridges, while Er(HSO4)3-II consists of a threedimensional polyhedra network. In the crystal structure of Er(SO4)(HSO4) Er3+ is sevenfold coordinated by oxygen atoms, which belong to four SO42–- and three HSO4-tetrahedra, respectively. The anhydrous sulfate, Er2(SO4)3, cannot be prepared from H2SO4 solutions but crystallizes from a NaCl-melt. The coordination number of Er3+ in Er2(SO4)3 (orthorhombic, Pbcn, a = 1270.9(1) pm, b = 913.01(7) pm, c = 921.67(7) pm) is six. The octahedral coordinationpolyhedra are connected via all vertices to the SO42–-tetrahedra.  相似文献   

15.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XX Formation and Structure of [{η2tBu2P–P}Pt(PHtBu2)(PPh3)] [{η2tBu2P1–P2}Pt(P3Ph3)(P4Ph3)] ( 2 ) reacts with tBu2PH exchanging only the P3Ph3 group to give [{η2tBu2P1–P2}Pt(P3HtBu2)(P4Ph3)] ( 1 ). The crystal stucture determination of 1 together with its 31P{1H} NMR data allow for an unequivocal assignment of the coupling constants in related Pt complexes. 1 crystallizes in the triclinic space group P1 (no. 2) with a = 1030.33(15), b = 1244.46(19), c = 1604.1(3) pm, α = 86.565(17)°, β = 80.344(18)°, γ = 74.729(17)°.  相似文献   

16.
Hydrothermal investigations in the system MgO/B2O3/P2O5(/H2O) yielded two new magnesium borophosphates, Mg2(H2O)[BP3O9(OH)4] and Mg(H2O)2[B2P2O8(OH)2]·H2O. The crystal structures were solved by means of single crystal X‐ray diffraction. While the acentric crystal structure of Mg2(H2O)[BP3O9(OH)4] (orthorhombic, P212121 (No. 19), a = 709.44(5) pm, b = 859.70(4) pm, c = 1635.1(1) pm, V = 997.3(3) × 106 pm3, Z = 4) contains 1D infinite chains of magnesium coordination octahedra interconnected by a borophosphate tetramer, Mg(H2O)2[B2P2O8(OH)2]·H2O (monoclinic, P21/c (No. 14), a = 776.04(5) pm, b = 1464.26(9) pm, c = 824.10(4) pm, β = 90.25(1)°, V = 936.44(9) × 106 pm3,Z = 4) represents the first layered borophosphate with 63 net topology. The structures are discussed and classified in terms of structural systematics.  相似文献   

17.
Colourless single crystals of [Hg(OH)](NO3)(H2O) were obtained by slow evaporation of an aqueous solution of Hg(NO3)2 and Bi(NO3)3. The crystal structure (orthorhombic, Pbca, Z = 8, a = 943.2(2), b = 697.6(1), c = 1349.0(2) pm, R1(all) = 0.0780) contains [Hg(OH)] = …OH–Hg–OH–Hg… zig zag chains (O–Hg–O angle: 168°, Hg–O–Hg angle: 112°, Hg–OH distance: 212 pm) to which one water molecule is attached loosely. The [Hg(OH)](H2O) chains are connected via bis‐monodentate‐bridging nitrate ions to corrugated layers that are stacked in the [001] direction. Hg2+ has an effective 2+2+2(+1) coordination.  相似文献   

18.
Three new Zn‐phosphonates based on 5‐phosphonoisophthalic acid, (HO2C)2C6H3PO3H2 (H4L), [Zn2(H2O)(O2C)2C6H3PO3] · H2O ( 1 ), Zn2(H2O)2(O2C)2C6H3PO3 ( 2 ), and KZn[H(O2C)2C6H3PO3] ( 3 ) have been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction ( 1 : triclinic, , a = 742.49(3) pm, b = 846.37(4) pm, c = 992.84(4) pm, α = 80.936(2)°, β = 81.574(2)°, γ = 73.139(3)°, V = 586.28(4) · 106 pm3, R1 = 0.0583, wR2 = 0.1347 (for I > 2σ(I)); 2 : monoclinic, P21/m, a = 464.78(9) pm, b = 1329.2(3) pm, c = 974.5(3) pm, β = 95.80(3)°, V = 599.0(2) · 106 pm3, R1 = 0.0395, wR2 = 0.1086 (for I > 2σ(I)); 3 : monoclinic, P21/c, a = 501.9(1) pm, b = 2489.9(5) pm, c = 946.2(5) pm, β = 105.38(3)°, V = 1140.0(7) · 106 pm3, R1 = 0.0365, wR2 = 0.0848 (for I > 2σ(I))). The title compounds 1 and 2 have the same chemical composition but exhibit different structures and are therefore polymorphs. Thus, in compound 1 , isolated ZnO4‐tetrahedra, and in 2 , infinite double‐chains of corner‐sharing ZnO6 polyhedra are observed. In, KZn[H(O2C)2C6H3PO3] ( 3 ) K+‐ions have been incorporated into the structure leading to the formation of a bimetallic inorganic‐organic hybrid compound.  相似文献   

19.
While attempting to synthesize the potassium and rubidium copper diyttrium tetratellurides KCuY2Te4 and RbCuY2Te4 in analogy to CsCuY2Te4 from 1:1:4‐molar mixtures of the elements (copper, yttrium and tellurium) with an excess of KBr or RbBr as flux and potassium or rubidium source, brown plate‐shaped crystals of KYTe2 and RbYTe2 with triangular cross‐section were obtained instead after 14 days at 900 °C in torch‐sealed evacuated silica tubes. These new ternary yttrium tellurides crystallize in the trigonal (KYTe2) or hexagonal system (RbYTe2) with space group R m (no. 166) or P63/mmc (no. 194), respectively. With unit cell dimensions of a = 439.51(2) pm, c = 2255.48(9) pm (c/a = 5.132) for KYTe2 and a = 443.26(2) pm, c = 1729.15(7) pm (c/a = 3.901) for RbYTe2, both crystal structures exhibit cadmium‐halide analogous layers spreading out parallel to the (001) planes, which are formed by edge‐condensation of the involved [YTe6]9– octahedra (d(Y3+–Te2–) = 308–309 pm). Charge compensation and three‐dimensional linkage of these anionic layers are achieved by monovalent interlayer alkali‐metal cations residing in trigonal antiprismatic (K+ in α‐NaFeO2‐type KYTe2, d(K+–Te2–) = 324 pm, 6×) or prismatic coordination (Rb+ in β‐RbScO2‐type RbYTe2, d(Rb+–Te2–) = 365 pm, 6×) of six Te2– ions each.  相似文献   

20.
Two manganese(II) bipyridine carboxylate complexes, [(bipy)2MnII(μ‐C2H5CO2)2MnII(bipy)2}2](ClO4)2 ( 1 ), and [MnII(ClCH2CO2)(H2O)(bipy)2]ClO4 · H2O ( 2 ) were prepared. 1 crystallizes in the triclinic space group P 1 with a = 8.604(3), b = 12.062(3), c = 13.471(3) Å, α = 112.47(2), β = 93.86(2), γ = 92.87(3)°, V = 1211.1(6) Å3 and Z = 1. In the dimeric, cationic complex with a crystallographic center of symmetry two 2,2′‐bipyridine molecules chelate each manganese atom. These two metal fragments are then bridged by two propionato groups in a syn‐anti conformation. The Mn…Mn distance is 4.653 Å. 2 crystallizes in the monoclinic space group P21/c with a = 9.042(1), b = 13.891(1), c = 21.022(3) Å, β = 102.00(1)°, V = 2569.3(5) Å3 and Z = 4. 2  is a monomeric cationic complex in which two bipyridine ligands chelate the manganese atom in a cis fashion. A chloroacetato and an aqua ligand complete the six‐coordination. Only in 2 is the intermolecular packing controlled by weak π‐stacking besides C–H…π contacts between the bipyridine ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号