首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the series of diaminoenones, large high‐frequency shifts of the 1H NMR of the N? H group in the cis‐position relative to the carbonyl group suggests strong N? H···O intramolecular hydrogen bonding comprising a six‐membered chelate ring. The N? H···O hydrogen bond causes an increase of the 1J(N,H) coupling constant by 2–4 Hz and high‐frequency shift of the 15N signal by 9–10 ppm despite of the lengthening of the relevant N? H bond. These experimental trends are substantiated by gauge‐independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3‐bis(isopropylamino)‐1‐(aryl)prop‐2‐en‐1‐one (12) for conformations with the Z‐ and E‐orientations of the carbonyl group relative to the N? H group. The effects of the N? H···O hydrogen‐bond on the NMR parameters are analyzed with the atoms‐in‐molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the N? H···O hydrogen bond as compared with that of 1,1‐di(pyrrol‐2‐yl)‐2‐formylethene (13) where N? H···O hydrogen bridge establishes a seven‐membered chelate ring, and the corresponding 1J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) →σ*N? H hyperconjugative interaction is weakened on going from the six‐membered chelate ring to the seven‐membered one due to a more bent hydrogen bond in the former case. A dominating effect of the N? H bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the 1J(N,H) value as a consequence of the N? H···O hydrogen bonding in the studied diaminoenones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The complexes of XH2NH2···HNO(X = B, Al, Ga) are characterized as head to tail with hydrogen bonding interactions. The structural characteristics can be confirmed by atoms in molecules (AIM) analysis, which also provide comparisons of hydrogen bonds strengths. The calculated interaction energies at G2MP2 level show that stability of complexes decrease as BH2NH2···HNO > AlH2NH2···HNO > GaH2NH2···HNO. On the basis of the vibrational frequencies calculations, there are red‐shifts for ν(X1? H) and blue‐shifts for ν(N? H) in the complexes on dihydrogen bonding formations (X1? H···H? N). On hydrogen bonding formations (N? H···O), there are red‐shifts for ν(N? H) compared to the monomers. Natural bond orbital (NBO) analysis is used to discuss the reasons for the ν(X1? H) and ν(N? H) stretching vibrational shifts by hyperconjugation, electron density redistribution, and rehybridization. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

3.
According to the density functional theory calculations, the X···H···N (X?N, O) intramolecular bifurcated (three‐centered) hydrogen bond with one hydrogen donor and two hydrogen acceptors causes a significant decrease of the 1hJ(N,H) and 2hJ(N,N) coupling constants across the N? H···N hydrogen bond and an increase of the 1J(N,H) coupling constant across the N? H covalent bond in the 2,5‐disubsituted pyrroles. This occurs due to a weakening of the N? H···N hydrogen bridge resulting in a lengthening of the N···H distance and a decrease of the hydrogen bond angle at the bifurcated hydrogen bond formation. The gauge‐independent atomic orbital calculations of the shielding constants suggest that a weakening of the N? H···N hydrogen bridge in case of the three‐centered hydrogen bond yields a shielding of the bridge proton and deshielding of the acceptor nitrogen atom. The atoms‐in‐molecules analysis shows that an attenuation of the 1hJ(N,H) and 2hJ(N,N) couplings in the compounds with bifurcated hydrogen bond is connected with a decrease of the electron density ρH···N at the hydrogen bond critical point and Laplacian of this electron density ?2ρH···N. The natural bond orbital analysis suggests that the additional N? H···X interaction partly inhibits the charge transfer from the nitrogen lone pair to the σ*N? H antibonding orbital across hydrogen bond weakening of the 1hJ(N,H) and 2hJ(N,N) trans‐hydrogen bond couplings through Fermi‐contact mechanism. An increase of the nitrogen s‐character percentage of the N? H bond in consequence of the bifurcated hydrogen bonding leads to an increase of the 1J(N,H) coupling constant across the N? H covalent bond and deshielding of the hydrogen donor nitrogen atom. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Proton transfer in hydrogen‐bonded organic co‐crystals of chloranilic acid with some organic bases was investigated by nuclear quadrupole resonance (NQR) spectroscopy. The 35Cl NQR frequencies of chloranilic acid molecule as well as 14N NQR frequencies of the organic base molecule were measured with the conventional pulse methods as well as double‐resonance methods, respectively. The extent of proton transfer in the O···H···N hydrogen bond was estimated from Townes–Dailey analysis of the 14N NQR parameters. The 35Cl NQR frequency and molecular geometry of chloranilic acid are correlated to the extent of proton transfer in the protonation process of the organic base molecule. It is shown that the hydrogen bond affects the π‐electron system of chloranilic acid. Geometry dependence of the O···H···N hydrogen bond, i.e. the H? N valence bond order versus the hydrogen‐bond geometry correlation is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A quantum chemistry investigation was carried out to examine hydrogen- and halogen-bonds properties in crystalline dichloroacetic acid (DCAA). We reported a systematic density functional theory study of the 17O, 35Cl, and 1H nuclear magnetic resonance (NMR) parameters in DCAA. Our results indicated that for those nuclei participated in the hydrogen- and halogen-bonding interactions; NMR parameters exhibit considerable changes on going from the isolated molecule model to the crystalline DCAA. Of course, the magnitude of these changes at each nucleus depends directly on its amount of contribution to the interactions. The topology of the electron density of O–H···O, C–H···O, Cl···Cl, and Cl···O interactions in solid DCAA was characterized using quantum theory of atoms in molecules (QTAIM). Based on QTAIM results, a partial covalent character is attributed to the O–H···O hydrogen bonds in DCAA, whereas all C–H···O, Cl···O, and Cl···Cl intermolecular contacts are weak and basically electrostatic in nature. Moreover, an approximate linear relationship seems to exist for each of the proton chemical shifts and anisotropies as a function of ρBCP.  相似文献   

6.
The O···H? O and Cl···H? O hydrogen bonding interactions were analyzed for HOCl dimers by using B3LYP, MP2, CCSD, and MP4(SDTQ) methods in conjunction with the various basis sets. Five isomers were found for the HOCl dimer. The ZPE and BSSE corrected binding energies were computed at the different levels of theory. At the optimized geometries obtained at CCSD/AUG‐cc‐pVDZ level, energies were re‐evaluated at MP4(SDTQ)/AUG‐cc‐pVTZ and CCSD(T)/cc‐pVTZ levels of theory. We found an average of ?20.9 and ?9.6 kJ/mol for the strength of the O···H and Cl···H hydrogen bonding interactions, respectively. Excitation and vertical ionization energies as well as rotational constants were computed at different levels of theory. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were used to elucidate the nature of the interactions of HOCl dimers. The interaction energies were decomposed by Morokuma methodology. We have computed ΔfH°(HOCl) and ΔfH°(HOCl+) using the atomization reactions. The Δf298(HOCl) values are ?17.85 and ?18.05 kcal/mol by using CBS‐Q and CBS‐QB3 extrapolation models, respectively, in good agreement with the results given in JANAF tables. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
采用水热法设计合成了两个新型三维超分子化合物H2L·H2O (1)和[Ag(bpy)2]·HL·H2O (2) (其中bpy=2,2'-联吡啶, H2L=2,4′-二羧基二苯甲酮),晶体结构分析表明,它们均是通过氢键采用不同的连接方式拓展而成。其中,化合物1 是2,4′-二羧基二苯甲酮和水分子通过O–H···O氢键形成的一维梯状链扩展构筑的三维超分子体系;化合物2 则是2,4′-二羧基二苯甲酮和水分子通过两种氢键形成含有一维隧道的三维超分子体系。有趣的是,[Ag(bpy)2]+ 阳离子通过π–π 堆积和弱的Ag···Ag相互作用连在一起,进而以客体形式填充其中。荧光性质研究表明,由于存在bpy的螯合与堆积效应,化合物2相比配体和化合物1,其荧光发射峰发生红移。  相似文献   

8.
Density functional calculations with Beck's three‐parameter hybrid method using the correlation functional of Lee, Yang, and Parr (B3LYP) were carried out for investigation of the intramolecular hydrogen bond strength in Nitroso‐oxime methane and its derivatives. Also, vibrational frequencies for them were calculated at the same level of theory. The π‐electron delocalization parameter (Q) and as a geometrical indicator of a local aromaticity, the geometry‐based harmonic oscillator measure of aromaticity index has been applied. Additionally, the linear correlation coefficients between substituent constants and selected parameters in R position have calculated. The obtained results show that the hydrogen bond strength is mainly governed by the resonance variations inside the chelate ring induced by the substituent groups. The topological properties of the electron density distributions for O? H ··· O intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules (AIM). Correlations between the H‐bond strength and topological parameters have been also studied. The electron density (ρ) and Laplacian (?2ρ) properties, estimated by AIM calculations, show that O ··· H bond have low ρ and negative (?2ρ) values (consistent with covalent character of the HBs), whereas O? H bond have positive (?2ρ) Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by quantum theory of natural bond orbital (NBO) methods fairly support the ab initio results. Natural population analysis data, the electron density, and Laplacian properties as well as υ(O? H) and γ(O? H) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, as well as 17O, 15N, 13C and 1H chemical shielding tensors in the anhydrous chitosan crystalline structure. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through a hexameric cluster. The computations were performed with the B3LYP method and 6-311++G(d,p) and 6-31++G(d,p) standard basis sets using the Gaussian 98 suite of programs. Calculated EFG and chemical shielding tensors were used to evaluate the 17O, 14N and 2H nuclear quadrupole resonance, NQR, and 17O, 15N, 13C and 1H nuclear magnetic resonance, NMR, parameters in the hexameric cluster, which are in good agreement with the available experimental data. The difference between the calculated NQR and NMR parameters of the monomer and hexamer cluster shows how much hydrogen bonding interactions affect the EFG and chemical shielding tensors of each nucleus. These results indicate that both O(3)-H(33)...O(5-3) and N-H(22)...O(6-4) hydrogen bonding have a major influence on NQR and NMR parameters. Also, the quantum chemical calculations indicate that the intra- and intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of EFG and chemical shielding principal components in the molecular frame axes.  相似文献   

10.
The crystal structure of methyl αd‐mannofuranoside was determined by X‐ray crystallography. The C‐1–C‐2, C‐2–C‐3, C‐3–C‐4, C‐4–O and O‐4–C‐1 distances within the furanoside ring are 1.513(2), 1.523(2), 1.516(2), 1.445(2) and 1.422(2) Å, respectively. The hydrogen bonding consists of O–H–O interactions which include the anomeric oxygen but exclude the ring oxygen atom. The two hydroxyls OH‐6 and OH‐2 are H‐bond acceptors and donors with H···O distances of 1.92–1.93 Å, whereas the OH‐3 and OH‐5 are only H‐bond donor [H···O distance of 2.04(2) Å]. Additionally, OH‐6 participates in a weak hydrogen bond to the anomeric oxygen [H···O distance of 2.19(3) Å]. The crystalline methyl αd‐mannofuranoside adopts an 3 E ring conformation. The analysis of 13C CPMAS NMR chemical shifts for solid methyl αd‐mannofuranoside confirm such H‐bonding pattern.  相似文献   

11.
The 1H, 13C and 15N NMR studies have shown that the E and Z isomers of pyrrole‐2‐carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole‐2‐carbaldehyde oxime is stabilized by the N? H···N and N? H···O intramolecular hydrogen bonds, respectively. The N? H···N hydrogen bond in the E isomer causes the high‐frequency shift of the bridge proton signal by about 1 ppm and increase the 1J(N, H) coupling by ~3 Hz. The bridge proton shows further deshielding and higher increase of the 1J(N, H) coupling constant due to the strengthening of the N? H···O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by ~3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of 1H shielding and 1J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N? H···N and N? H···O hydrogen bondings to be estimated. The NBO analysis suggests that the N? H···N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N? H bond through the N? H···O hydrogen bond occurs in the Z isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
Solid-state nuclear magnetic resonance (NMR) parameters of 17O, 14N/15N, and 2H/1H nuclei were evaluated in two available neutron crystalline structures of N-methylacetamide (NMA) at 250 and 276 K, NMA-I and NMA-II, respectively. Density functional theory calculations were performed by B3LYP method and 6-311++G** and IGLO-II type basis sets to calculate the electric field gradient (EFG) and chemical shielding (CS) tensors at the sites of mentioned nuclei. In order to investigate hydrogen bonds (HBs) effects on NMR tensors, calculations were performed on four-model systems of NMA: an optimized isolated gas-phase, crystalline monomers, crystalline dimers, and crystalline trimers. Comparing the calculated results reveal the influence of N–H···O=C and C–H···O=C HB types on the NMR tensors which are observable by the evaluated parameters including quadrupole coupling constant, C Q, and isotropic CS, σ iso. Furthermore, the results demonstrate more influence of HB on the EFG and CS tensors of NMA at 276 K rather than that of 250 K.  相似文献   

14.
The centrosymmetric {[(HOOCCH2PPh2)]2(CH2)4}2+ cation adopts an extended conformation in which the phosphorus center adopts a tetrahedral geometry. O? H···O and C? H···O hydrogen bonding interactions expand this structure to form a two‐dimensional layered architecture. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Theoretical calculations were performed to study the nature of the hydrogen bonds in the complexes HCHO···HSO, HCOOH···HSO, HCHO···HOO, and HCOOH···HOO. The geometric structures and vibrational frequencies of these four complexes at the MP2/6‐31G(d,p) and MP2/6‐311+G(d,p) levels are calculated by standard and counterpoise‐corrected methods, respectively. The results indicate that in the complexes HCHO···HSO and HCOOH···HSO the S? H bond is strongly contracted. In the S? H···O hydrogen bonds, the calculated blue shifts for the S? H stretching frequencies are in the vicinity of 50 cm?1. While in the complexes HCHO···HOO and HCOOH···HOO, the O? H bond is elongated and O? H···O red‐shifted hydrogen bonds are found. From the natural bond orbital analysis it can be seen that the X? H bond length in the X? H···Y hydrogen bond is controlled by a balance of four main factors in the opposite directions: hyperconjugation, electron density redistribution, rehybridization, and structural reorganization. Among them hyperconjugation has the effect of elongating the X? H bond. Electron density redistribution and rehybridization belong to the bond shortening effects, while structural reorganization has an uncertain influence on the X? H bond length. In the complexes HCHO···HSO and HCOOH···HSO, the shortening effects dominate which lead to the blue shift of the S? H stretching frequencies. In the complexes HCHO···HOO and HCOOH···HOO where elongating effects are dominant, the O? H···O hydrogen bonds are red‐shifted. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

17.
According to the 1H, 13C and 15N NMR spectroscopic data and DFT calculations, the E‐isomer of 1‐vinylpyrrole‐2‐carbaldehyde adopts preferable conformation with the anti‐orientation of the vinyl group relative to the carbaldehyde oxime group and with the syn‐arrangement of the carbaldehyde oxime group with reference to the pyrrole ring. This conformation is stabilized by the C? H···N intramolecular hydrogen bond between the α‐hydrogen of the vinyl group and the oxime group nitrogen, which causes a pronounced high‐frequency shift of the α‐hydrogen signal in 1H NMR (~0.5 ppm) and an increase in the corresponding one‐bond 13C–1H coupling constant (ca 4 Hz). In the Z‐isomer, the carbaldehyde oxime group turns to the anti‐position with respect to the pyrrole ring. The C? H···O intramolecular hydrogen bond between the H‐3 hydrogen of the pyrrole ring and the oxime group oxygen is realized in this case. Due to such hydrogen bonding, the H‐3 hydrogen resonance is shifted to a higher frequency by about 1 ppm and the one‐bond 13C–1H coupling constant for this proton increases by ~5 Hz. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A new ligand (L) and its mercury(II) complex have been synthesized under mild conditions. X-ray single-crystal structural analyses reveal 1-D, 2-D, and 3-D supermolecular structure of L and HgLI2. Solvent molecules and various weak interactions, including hydrogen bonds (N–H···N, O–H···O, and O–H···N) and π–π interactions play signi?cant roles in the ?nal supermolecular structures. Detailed investigation on 1H NMR spectra of L and HgLI2 are presented. Their photophysical properties were investigated both experimentally and theoretically.  相似文献   

20.
1H and 13C NMR spectroscopy of a series of 1‐vinyl‐2‐(2′‐heteroaryl)‐pyrroles were employed for the analysis of their electronic and spatial structure. The C—H···N intramolecular interaction between the α‐hydrogen of the vinyl group and the pyridine nitrogen, a kind of hydrogen bonding, was detected in 1‐vinyl‐2‐(2′‐pyridyl)pyrrole, which disappeared in its iodide methyl derivative. It was shown that this interaction is stronger than the C—H···O and C—H···S interactions in 1‐vinyl‐2‐(2′‐furyl)‐ and ‐2‐(2′‐thienyl)‐pyrroles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号