首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
But-3-enyldiphenylphosphine (mbp) and diphenylpent-4-enylphosphine (mpp) react with Rh2Cl2(C2H4)4 (molar ratio 21 to form the four coordinate dimeric complexes Rh2Cl2(mbp)2 and Rh2Cl2(mpp)2 respectively, while but-3-enyldiphenylphosphine reacts with Rh2Cl2(C2H4)4 (molar ratio 41) to form RhCl(mbp)2, a five coordinate complex in the solid state. The dimers further react with sodium tetraphenylborate to give the π-bonded tetraphenylborate complexes Rh[mbp][C6H5)4B] and Rh[i-mpp][(C6H5)4B] where i-mpp = (C6H5)2P(CH2CH2CHCHCH3). RhCl(CO)(mbp)2 reacts with sodium tetraphenylborate to form the five coordinate cationic complex [Rh(CO)(mbp)2][(C6H5)4B]. Both RhCl(CO)(mbp)2 and RhCl(mbp)2 react with hydrogen in methanol saturating the olefin to form RhCl[CO][(C6H5)2P(C4H9)]2 and Rh2Cl2[(C6H5)2P(C4H9)]2 respectively.  相似文献   

2.
Abstract

A novel tertiary phosphine oxide containing two quinaldinyl substituents has been synthesized according to adapted literature procedures. Its coordination properties toward Cu(I) and Ag(I) were investigated and the resulting complexes were analyzed by single crystal X-ray diffraction. Multinuclear complexes are formed, wherein the ligand is bridging across two metal centers. Though for the silver complex, no argentophilic interactions are present. The copper complex was characterized further by multinuclear NMR spectroscopy at variable temperatures.  相似文献   

3.
When RhCl3 · 3H2O was treated with an excess of Te(CH2SiMe3)2, a mononuclear mer-[RhCl3{Te(CH2SiMe3)2}3] (1) was observed as the main product. By reducing the metal-to-ligand molar ratio, dinuclear [Rh2(μ-Cl)2Cl4{Te(CH2SiMe3)2}4] (2) was obtained in addition to 1. Further reduction of the metal-to-ligand ratio resulted in the formation of [Rh2(μ-Cl)2Cl4(OHCH2CH3){Te(CH2SiMe3)2}3] (3). The treatment of mer-[RhCl3(SMePh)3] (4) with two equivalents of Te(CH2SiMe3)2 affords a mixture of mer-[RhCl3{Te(CH2SiMe3)2}3] (1) and mer-[RhCl3{Te(CH2SiMe3)2}2(SMePh)] (5). All complexes 1-4 and 5 · ½EtOH were characterized by X-ray crystallography and 125Te NMR spectroscopy, where appropriate. The definite assignment of the 125Te chemical shifts enabled a plausible discussion of the assignment of some unknown resonances that were observed in the NMR spectra.  相似文献   

4.
N,N-Bis(but-3-enyl)amines 5a-i were prepared in overall 74% yield from 1-(triphenylphosphoroylideneaminoalkyl)benzotriazole using an aza-Wittig reaction with aldehydes followed by a double Grignard reaction with allylmagnesium bromide. Use of vinyl or 1-propynylmagnesium bromide and allylmagnesium bromide in a sequential fashion also formed the expected doubly unsaturated amines 9a,b and 12, respectively.  相似文献   

5.
Reaction of [[Rh(mu-Cl)(CO)2]2] with the triazene ArNNNHAr (Ar = o-CO2MeC6H4) produced the mononuclear complex [RhCl(ArNNNHAr)(CO)2] (1). Complex 1 reacted with KOH in methanol to give the dinuclear compound [[Rh(mu-ArNNNAr)(CO)2]2] (2), which showed a "mu-(1kappaN1,2kappaN3)-ArNNNAr" coordination mode for both bridging ligands. The dinuclear complex [[Rh(mu-ArNNNAr)(CO)2]2] (2) easily undergoes redistribution reactions in which the eight-membered "Rh2(NNN)2" core is broken. Thus, reaction of 2 with the anionic complex (NHEt3)[RhCl2(CO)2] gave the single-bridged complex (NHEt3)[Rh2(mu-ArNNNAr)Cl2(CO)4] (4), while the trinuclear complexes [Rh3(mu-ArNNNAr)(mu-Cl)(mu-CO)Cl(CO)4] (5) and [Rh3(mu-ArNNNAr)2(mu-Cl)(mu-CO)(CO)3] (6) were isolated by addition of the neutral compound [[Rh(mu-Cl)(CO)2]2] to 2, depending on the molar ratio employed. The formation of 5 and 6 involved the loss of carbonyl groups and the coordination of the oxygen atoms of the CO2Me groups. The structures of 4, 5, and 6 have been determined by X-ray diffraction methods, which show the ability of bis(o-carboxymethylphenyl)triazenide to act as bi-, tri-, and tetra-dentate ligand-spanning dinuclear moieties in trinuclear complexes.  相似文献   

6.
A combination of the rigid bis(5H-dibenzo[a,d]cyclohepten-5-yl)amine (trop(2)NH) and 5-amino-5H-dibenzo[a,d]cycloheptene (tropNH(2)) ligand allowed the synthesis of the stable pentacoordinated 18 electron amine olefin rhodium(i) complex [Rh(trop(2)NH)(tropNH(2))]O(3)SCF(3)(); this complex can be cleanly deprotonated [pK(a)(DMSO) = 20.6(1)] to the corresponding amide [Rh(trop(2)N)(tropNH(2))](6) which is reversibly oxidised at -0.466 V (vs. Fc/Fc(+)). The coordinated NH bond strength in is estimated to be 379 +/- 10 kJ mol(-1).  相似文献   

7.
Routes have been developed to the hitherto unobtainable arsine-olefin ligands (CH2CHCH2CH2)nAs(CH2CH2CH2AsMe2)3-n (n = 1, tasol, but-3-enylbis(3-dimethylarsinopropyl)arsine; n = 2, dasdol, 3-dimethylarsinopropylbis(but-3-enyl)arsine) by making use of the difference in reactivity between the ClC and AsCl bonds in the precursor Cl(CH2)mAsCl2 (m = 2,3) molecules. Thus, the triarsine obtained by reaction of 2-chloroethyldichloroarsine with the Grignard reagent of 3-chloropropyldimethylarsine yields 2-chloroethylbis(3-dimethylarsinopropyl)arsine, from which tasol is obtainable by subsequent reaction with either the Grignard reagent of vinyl bromide or, preferably, with vinyllithium. Similarly, 3-chloropropyldichloroarsine reacts with the Grignard reagent of 4-chlorobut-1-ene to form 3-chloropropylbis(but-3-enyl)arsine which, on reaction with sodium dimethylarsenide yields dasdol. The tasol ligand reacts with nickel(II) salts to form [NiX(tasol)]+ (X = Cl, Br) and [NiI2(tasol)], the former are trigonal bipyramidal and contain a nickel(II)—olefin bond, and the latter are square pyramidal containing a [NiI2As3] coordination sphere. In addition, tasol forms a number of polynuclear complexes with nickel(II). The dasdol ligand acts as a bidentate arsine to form only [NiX(dasdol)2)]+ The formation of novel nickel(II)—olefin bonds in the [NiX(tasol)]+ cations is discussed.  相似文献   

8.
The complexes Et4N[Rh(SnCl3)2(diolefin)(PR3)] (diolefin = COD or NBD) have been isolated and their reactions studied. Reaction with arylic tertiary phosphines led to SnCl3 displacement and isolation of neutral pentacoordinated Rh(SnCl3)(diolefin)(PR3)2 complexes. Reaction with carbon monoxide involved diolefin displacement when the diolefin was COD, thus giving Et4N[Rh(SnCl3)2(CO)2(PR3)] compounds, but SnCl3 displacement when it was NBD, thus yielding Rh(SnCl3)(CO)(NBD)(PR3) complexes. The complexes [Rh(diolefin)Cl]2 were found to react with triarylphosphines in the presence of SnCl2 and with CO bubbling through the solution to give Rh(SnCl3)(CO)(NBD)(PR3) when the diolefin was NBD but Rh(Cl)(CO)(PR3)2 when the diolefin was COD.  相似文献   

9.
The new pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine (TL(tBu)) has been prepared in high yield from 2,6-bis(hydroxymethyl)pyridine (1) and 1,3-di-tert-butylimidazolin-2-imine (3). Reaction of TL(tBu) with [Cu(MeCN)4]PF6 affords the highly reactive copper(I) complex [(TL(tBu))Cu]PF6, [5]PF6, which forms the stable copper(I) isocyanide complexes [6a]PF6 (nu(CN) = 2179 cm(-1)) and [6b]PF6 (nu(CN) = 2140 cm(-1)) upon addition of tert-butyl or 2,6-dimethylphenyl isocyanide, respectively. For the cations 6a and 6b, DFT calculations reveal ground-state electronic structures of the type [(TL(tBu)-kappaN(1):kappaN(2))Cu(CNR)] with tricoordinate geometries around the copper atoms. Exposure of [5]PF6 to the air readily leads to trapping of atmospheric CO2 to form the square-planar complex [(TL(tBu))Cu(HCO3-kappaO)]PF6, [7]PF6, with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. In chlorinated solvents such as dichloromethane or chloroform, [5]PF(6) rapidly abstracts chloride by reductive dechlorination of the solvent to yield [(TL(tBu))CuCl]PF6, [8]PF6 quantitatively. Reaction of TL(tBu) with copper(I) bromide or chloride affords complexes 9a and 9b, respectively, for which X-ray diffraction analysis, low-temperature NMR experiments and DFT calculations reveal the presence of a kappa(2)-coordinated ligand of the type [(TL(tBu)-kappaN(1):kappaN(2))CuX]. In solution, complex 9b undergoes slow disproportionation forming the mixed-valence copper(II)/copper(I) system [(TL(tBu))CuCl][CuCl2], [8]CuCl2 with a linear dichlorocuprate(I) counterion.  相似文献   

10.
(NEt4)2[Re(CO)3Br3] or (NEt4)2[Tc(CO)3Cl3] react with bis(2-pyridyl)phenylphosphine (PPhpy2) or tris(2-pyridyl)phosphine (Ppy3) under formation of neutral tricarbonyl complexes of the composition [M(CO)3X(L)] (M = Re, X = Br; M = Tc, X = Cl; L = PPhpy2 or Ppy3). In all isolated products, the ligands coordinate solely via two of their nitrogen atoms. All attempts to force a tripodal coordination of the phosphinopyridines failed. Removal of the bromo ligands from (NEt4)2[Re(CO)3Br3] by the addition of AgNO3 in THF/water, and subsequent reaction of the resulting [Re(CO)3(THF)3](NO3)with Ppy3 yielded the complex [Re(CO)3(NO3)(Ppy3-N,N′)] with a monodentate coordinated nitrato ligand. The products have been characterized spectroscopically and by X-ray structure analyses.  相似文献   

11.
It is shown that trigonal bipyramidal platinum(II), rhodium(I) and iridium(I) olefin complexes are better classified with the platinum(O) complex [Pt(PPh3)2(C2H4)] as class T olefin complexes than with the square-planar platinum(II) complexes such as [Pt(C2H4)Cl3]- which fall in class S. The underlying reasons for this are considered to be electronic rather than steric as was previously suggested.  相似文献   

12.
1H and 31P NMR spectroscopy are used to determine the nature of the species present in catalytically active solutions prepared by treating [RhCl(C2H4)2]2 with diphosphines and [Rh(norbornadiene)diphosphine]BF4 with hydrogen (diphosphine = 1,3-bis(diphenylphosphino)propane (dppp) and isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane (diop)).  相似文献   

13.
Polystyrene supported Rh(I) AA′ (AA′ = anthranilic acid, 2,2′-bipyridine or 1,10-phenanthroline) complexes catalyse the hydrogenation of monoolefins (terminal, cyclic and internal) and dienes. Ethyl sorbate undergoes saturation via the monoene intermediate. Thiscis olefin reacts faster than thetrans isomer. The rate law for the reaction is: Rate α [catalyst] [substrate] [H2].  相似文献   

14.
The electrochemical behaviour of the set of tetracoordinate rhodium(I) complexes [Rh(OO)(CO)L] [OO=MeC(O)CHC(O)Me (acac), L=CO (1), P(NC4H4)3 (2), PPh(NC4H4)2 (3), PPh2(NC4H4) (4), PPh3 (5), PCy3 (6), P(OPh)3 (7) or PPh2(C6H4OMe-4) (8); OO=PhC(O)CHC(O)Me (bac), L=CO (9) or PPh3 (10); OO=PhC(O)CHC(O)CF3(bta), L=CO (11) or PPh3 (12)] and of the pentacoordinate [RhH(CO)L3] [L=P(NC4H4)3 (13), PPh3 (14), P(OPh)3 (15) or P(OC6H4Me-4)3 (16)] and [RhHL4] [L=PPh3 (17) or P(OC6H4Me-3)3 (18)] was studied by cyclic voltammetry and controlled potential electrolysis, in aprotic medium, at a Pt electrode. They present a single-electron oxidation wave (I) (irreversible or quasi-reversible) that can be followed, at a higher potential, by a second and irreversible one (II). The values of first oxidation potential for the tetracoordinate complexes fit the additive Lever's electrochemical parameterisation, and the ligand electrochemical Lever EL and Pickett PL parameters were estimated for the N-pyrrolyl phosphines PPhn(NC4H4)3−n (n=0, 1 or 2) and for the organophosphines PCy3 and PPh2(C6H4OMe-4), the former behaving as weaker net electron donors (the electron donor ability decreases with the increase of the number of N-pyrrolyl groups) than the latter phosphines. The pentacoordinate hydride complexes 13–18 fit a distinct relationship which enabled the estimate of the EL ligand parameter for the phosphites P(OC6H4Me-3)3 and P(OC6H4Me-4)3. Electrochemical metal site parameters were obtained for the square planar and the pentacoordinate Rh(I)/Rh(II) couples and, for the former, the redox potential is shown to present a much higher sensitivity to a change of a ligand than the octahedral redox couples investigated so far. Linear relationships were also observed between the oxidation potential and the PL ligand parameter (for the series [Rh(acac)(CO)L]) or the infrared ν(CO) frequency, and a generalisation of the former type of correlation is proposed for series of square-planar 16-electron complexes [M′SL] with a common 14-electron T-shaped binding metal centre {M′S}. Oxidation of 5 by Ag[PF6] leads to the dimerisation of the derived Rh(II) species.  相似文献   

15.
16.
Reaction of [Cp*IrCl2]2 (1) with dpmp in the presence of KPF6 afforded a binuclear complex [Cp*IrCl(dpmp-P1,P2;P3)IrCl2Cp*](PF6) (2) (dpmp =(Ph2PCH2)2PPh). The mononuclear complex [Cp*IrCl(dpmp-P1,P2)](PF6) (4) was generated by the reaction of [Cp*IrCl2(BDMPP)](BDMPP =PPh[2,6-(MeO)2C6H3]2) with dpmp in the presence of KPF6. These mono- and binuclear complexes have four-membered ring structures with a terminal and a central P atom of the dpmp ligand coordinated to an iridium atom as a bidentate ligand. Since there are two chiral centers at the Ir atom and a central P2 atom, there are two diastereomers that were characterized by spectrometry. Complexes anti-4 and syn-4 reacted with [Cp*RhCl2]2 or [(C6Me6)RuCl2]2, giving the corresponding mixed-metal complexes, anti- and syn- [Cp*IrCl(dppm-P1,P2;P3)MCl2L](PF6) (6: M = Rh, L = Cp*; 7: M = Ru, L = C6Me6). Treatment with AuCl(SC4H8) gave tetranuclear complexes, anti- and syn-8 [[Cp*IrCl(dppm-P1,P2;P3)AuCl]2](PF6)2 bearing an Au-Au bond. Reaction of anti- with PtCl2(cod) generated the trinuclear complex anti-9, anti-[[Cp*IrCl(dppm-P1,P2;P3)]2PtCl2](PF6)2. These reactions proceeded stereospecifically. The P,O-chelated complex syn-[Cp*IrCl(BDMPP-P,O)] (syn-10)(BDMPP-P,O = PPh[2,6-(MeO)2C6H3][2-O-6-(MeO)C6H3]2) reacted with dpmp in the presence of KPF6, generating the corresponding anti-complex as a main product as well as a small amount of syn-complex, [Cp*Ir(BDMPP-P,O)(dppm-P1)](PF6) (11). The reaction proceeded preferentially with inversion. The reaction processes were investigated by PM3 calculation. anti- was treated with MCl2(cod), giving anti-[Cp*Ir(BDMPP-P,O)(dppm-P1;P2,P3)MCl2](PF6)(14: M = Pt; 15: M = Pd), in which the MCl2 moiety coordinated to the two free P atoms of anti-11. The X-ray analyses of syn-2, anti-2, anti-4, anti-8 and anti-11 were performed.  相似文献   

17.
Summary The preparations and characterisation of cationic complexes of the type [Rh(CO)(MeCN)(PR3)2]ClO4, [Rh(CO)L(PR3)2]ClO4 (L=py or 2-MeOpy), [Rh(CO)(L-L)(PR3)2]ClO4 (L-L = bipy or phen) and [Rh(CO)(PR3)3]ClO4 with PR3 = P(p-YC6H4)3 (Y=Cl, F, Me or MeO) are described.  相似文献   

18.
A new cyclisation of 3-(but-3-enyl) indole derivatives that produces policyclic compounds with a hexahydrocarbazole structure is described. In this reaction three stereogenic centres are generated in one step, and this process can be considered as evidence of the biogenetic relationship between anominine and tubingensin A.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号