首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of superalkali Li3S and XCCH (X = F, Cl, Br, and I) have been studied with theoretical calculations at the MP2/aug‐cc‐pVTZ level. Three types of structures are found: (A) the X atom combines with the S atom through a halogen bond; (B) the X atom interacts with the π electron of Li3S by a π halogen bond; (C) the H atom combines with the S atom through a hydrogen bond. For A and B, a heavier halogen atom makes the interaction stronger, while for C, the change of interaction energy is not obvious, showing a small dependence on the nature of the X atom in HCCX. A is more stable than B and their difference in stability decreases as X varies from Cl to I. For the F and Cl complexes, A is weaker than C, however, the former is stronger than the latter in the Br and I complexes. The above three types of interactions have been analyzed by means of electron localization function, electron density difference, and energy decomposition, and the results show that they have similar nature and features with conventional interactions. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The structure and properties (geometric, energetic, electronic, spectroscopic, and thermodynamic properties) of HArF‐HOX (X = F, Cl, Br) complex have been investigated at the MP2/aug‐cc‐pVTZ level. Three types of complexes are formed through a hydrogen bond or a halogen bond. The HArF‐HOX complex is the most stable, followed by the FArH‐OHX complex, and the HArF‐XOH complex is the most unstable. The binding distance in FArH‐OHX complex is very short (1.1–1.7 Å) and is smaller than that in HArF‐HOX complex. However, the interaction strength in the former is weaker than that in the latter. Thus, an unusual short hydrogen bond is present in FArH‐OHX complex. The associated H‐Ar bond exhibits a red shift, whereas the distant one gives a blue shift. A similar result is also found for the O? H and O? X bonds. The isotropic chemical shift is negative for the associated hydrogen atom but is positive for the associated halogen atom. However, a reverse result is found for the anisotropic chemical shift. The analyses of natural bond orbital and atoms in molecules have been performed for these complexes to understand the nature and properties of hydrogen and halogen bonds. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

3.
Quantum chemical calculations have been performed to study the complex of MCN-LiCN-XCCH (M = H, Li, and Na; X = Cl, Br, and I). The aim is to study the cooperative effect between halogen bond and lithium bond. The alkali metal has an enhancing effect on the lithium bond, making it increased by 77 and 94% for the Li and Na, respectively. There is the cooperativity between the lithium bond and halogen bond. The former has a larger enhancing effect on the latter, being in a range of 11.7-29.4%. The effect of cooperativity on the halogen bond is dependent on the type of metal and halogen atoms. The enhancing mechanism has been analyzed in views with the orbital interaction, charge transfer, dipole moment, polarizability, atom charges, and electrostatic potentials. The results show that the electrostatic interaction plays an important role in the enhancement of halogen bond.  相似文献   

4.
Specific short contacts are important in crystal engineering. Hydrogen bonds have been particularly successful and together with halogen bonds can be useful for assembling small molecules or ions into crystals. The ionic constituents in the isomorphous 3,5‐dichloropyridinium (3,5‐diClPy) tetrahalometallates 3,5‐dichloropyridinium tetrachloridozincate(II), (C5H4Cl2N)2[ZnCl4] or (3,5‐diClPy)2ZnCl4, 3,5‐dichloropyridinium tetrabromidozincate(II), (C5H4Cl2N)2[ZnBr4] or (3,5‐diClPy)2ZnBr4, and 3,5‐dichloropyridinium tetrabromidocobaltate(II), (C5H4Cl2N)2[CoBr4] or (3,5‐diClPy)2CoBr4, arrange according to favourable electrostatic interactions. Cations are preferably surrounded by anions and vice versa ; rare cation–cation contacts are associated with an antiparallel dipole orientation. N—H…X (X = Cl and Br) hydrogen bonds and X X halogen bonds compete as closest contacts between neighbouring residues. The former dominate in the title compounds; the four symmetrically independent pyridinium N—H groups in each compound act as donors in charge‐assisted hydrogen bonds, with halogen ligands and the tetrahedral metallate anions as acceptors. The M X coordinative bonds in the latter are significantly longer if the halide ligand is engaged in a classical X …H—N hydrogen bond. In all three solids, triangular halogen‐bond interactions are observed. They might contribute to the stabilization of the structures, but even the shortest interhalogen contacts are only slightly shorter than the sum of the van der Waals radii.  相似文献   

5.
The properties and applications of halogen bonds are dependent greatly on their strength. In this paper, we suggested some measures for enhancing the strength of the halogen bond relative to the hydrogen bond in the H(2)CS-HOX (X = F, Cl, and Br) system by means of quantum chemical calculations. It has been shown that with comparison to H(2)CO, the S electron donor in H(2)CS results in a smaller difference in strength for the Cl halogen bond and the corresponding hydrogen bond, and the Br halogen bond is even stronger than the hydrogen bond. The Li atom in LiHCS and methyl group in MeHCS cause an increase in the strength of halogen bonding and hydrogen bonding, but the former makes the halogen bond stronger and the latter makes the hydrogen bond stronger. In solvents, the halogen bond in the Br system is strong enough to compete with the hydrogen bond. The interaction nature and properties in these complexes have been analyzed with the natural bond orbital theory.  相似文献   

6.
The various sorts of complexes in which HArF and AuX (X = F, Cl, Br, I) can engage are probed by MP2/aug-cc-pVTZ calculations. The most weakly bound are those containing a halogen bond (XB) of the AuX⋯FArH sort, with binding energies less than 8 kcal/mol. H-bonded dimers FArH⋯XAu are a little stronger, held together by some 12 kcal/mol. Being the most strongly bound places the F atom of HArF roughly midway between Ar and Au in an F-shaped structure, bound by some 43–54 kcal/mol. The last sort of product involves atomic rearrangements wherein the H atom migrates from Ar to Au, followed by formation of a covalent Ar–Au bond. The resulting molecular unit is stabilized by 30–40 kcal/mol relative to the original HArF and AuX reactants. The H-bonded dimers are held together by an unusually large polarization component, surpassing electrostatic attraction, while dispersion predominates for the halogen bonds. Perturbations of the geometries and stretching frequencies offer a ready means of distinguishing the different types of complexes by spectroscopic techniques.  相似文献   

7.
吡咯与HX(X=F,Cl,Br)分子间多种氢键的电子密度拓扑研究   总被引:2,自引:0,他引:2  
王海燕  孟令鹏  曾艳丽  郑世钧 《化学学报》2007,65(15):1407-1414
采用密度泛函B3LYP/6-311++G(d,p)方法, 对吡咯与HX (X=F, Cl, Br)形成的经典氢键和π型氢键, 从其几何参数、电子密度的拓扑性质和电子积分等方面进行了研究. 在对π型氢键的讨论中我们将π电子与σ电子分离, 得到了π型氢键体系的π电子的密度等值线和拉普拉斯量等值线图以及各原子的π电子积分, 形象地说明了π型氢键的作用本质.  相似文献   

8.
The cooperative effect of hydrogen and halogen bonds on the 2‐dimensional molecular arrangement of highly oriented pyrolytic graphite has been studied by scanning tunneling microscopy. The scanning tunneling microscopy observations demonstrate that the self‐assembled hydrogen‐bonded molecular chicken‐wire networks of trimesic acid have been significantly transformed after annealing and the introduction of tribromobenzene guest molecules. Bromine atoms and carboxyl groups were found to form 2 different multicomponent structures via hydrogen and halogen bonds. Owing to the effect of halogen and hydrogen bonds, tribromobenzene with trimesic acid formed the 3‐fold symmetry networks.  相似文献   

9.
As known, the electron density of covalently bound halogen atoms is anisotropically distributed, making them potentially able to establish many weak interactions, acting at the same time as halogen bond donors and hydrogen bond acceptors. Indeed, there are many examples in which the halogen and hydrogen bond coexist in the same structure and, if a correct bond analysis is required, their separation is mandatory. Here, the advantages and limitations of coupling the charge displacement analysis with natural orbital for chemical valence method (NOCV-CD) to separately analyze orthogonal weak interactions are shown, for both symmetric and asymmetric adducts. The methodology gives optimal results with intermolecular adducts but, in the presence of an organometallic complex, also intramolecular interactions can be correctly analyzed. Beyond the methodological aspects, it is shown that correctly separate and quantify the interactions can give interesting chemical insights about the systems.  相似文献   

10.
The competition between hydrogen‐ and halogen‐bonding interactions in complexes of 5‐halogenated 1‐methyluracil (XmU; X = F, Cl, Br, I, or At) with one or two water molecules in the binding region between C5‐X and C4?O4 is investigated with M06‐2X/6‐31+G(d). In the singly‐hydrated systems, the water molecule forms a hydrogen bond with C4?O4 for all halogens, whereas structures with a halogen bond between the water oxygen and C5‐X exist only for X = Br, I, and At. Structures with two waters forming a bridge between C4?O and C5‐X (through hydrogen‐ and halogen‐bonding interactions) exist for all halogens except F. The absence of a halogen‐bonded structure in singly‐hydrated ClmU is therefore attributed to the competing hydrogen‐bonding interaction with C4?O4. The halogen‐bond angle in the doubly‐hydrated structures (150–160°) is far from the expected linearity of halogen bonds, indicating that significantly non‐linear halogen bonds may exist in complex environments with competing interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
The [H2X2]+ (X = Cl, Br) formula could refer to two possible stable structures, namely, the hydrogen-bonded complex and the three-electron-bonded one. In contrary to the results published by other authors, we claim that for the F-type structures the hydrogen-bonded form is the only possible one and the [HFFH]+ complex is an artifact as its wave function is unstable. For all analyzed molecules, the IR anharmonic spectra have been simulated, which enabled a deeper analysis of other authors' published results of IR low-temperature matrix experiments. Topological atoms in molecules and electron localization function investigations have revealed that the nature of the bond in three-electron-bonded structures is similar to the covalent-depleted one in F2 or HOO molecules, but the effect of removing electrons from the bond area is stronger.  相似文献   

12.
Halogen-hydride interactions between Z-X (Z = CN, NC and X = F, Cl, Br) as halogen donor and H-Mg-Y (Y = H, F, Cl, Br, CH(3)) as electron donor have been investigated through the use of Becke three-parameter hybrid exchange with Lee-Yang-Parr correlation (B3LYP), second-order M?ller-Plesset perturbation theory (MP2), and coupled-cluster single and double excitation (with triple excitations) [CCSD(T)] approaches. Geometry changes during the halogen-hydride interaction are accompanied by a mutual polarization of both partners with some charge transfer occurring from the electron donor subunit. Interaction energies computed at MP2 level vary from -1.23 to -2.99 kJ/mol for Z-F···H-Mg-Y complexes, indicating that the fluorine interactions are relatively very weak but not negligible. Instead, for chlorine- and bromine-containing complexes the interaction energies span from -5.78 to a maximum of -26.42 kJ/mol, which intimate that the interactions are comparable to conventional hydrogen bonding. Moreover, the calculated interaction energy was found to increase in magnitude with increasing positive electrostatic potential on the extension of Z-X bond. Analysis of geometric, vibrational frequency shift and the interaction energies indicates that, depending on the halogen, CN-X···H interactions are about 1.3-2.0 times stronger than NC-X···H interactions in which the halogen bonds to carbon. We also identified a clear dependence of the halogen-hydride bond strength on the electron-donating or -withdrawing effect of the substituent in the H-Mg-Y subunits. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Finally, several correlative relationships between interaction energies and various properties such as binding distance, frequency shift, molecular electrostatic potential, and intermolecular density at bond critical point have been checked for all studied systems.  相似文献   

13.
Using ab initio calculations, we have investigated the possibility of formation of triangular XBr:SHX:PH2X complexes, where X = F, Cl, Br, CN, NC, OH, NH2, and OCH3. These complexes are formed through the interaction of a positive electrostatic potential region (σ‐hole) on a molecule with the negative region in another one. The results show that the combined halogen, chalcogen, and pnictogen interactions can give rise to stable cyclic structures. The interaction energies of these complexes span over a wide range, from ?3.55 to ?24.93 kcal/mol. Nice quadratic correlations are found between the interaction energies and binding distances in the trimers. To understand the nature of the interactions in these complexes, molecular electrostatic potential and quantum theory of atoms in molecule analyses are performed. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The Raman spectra of compounds R2NPX2 (R=Me and Et; X=F, Cl, and Br) were studied. The time correlation functions of vibrational and rotational relaxations as well as the characteristic times of these processes were calculated. Conclusions concerning the mechanisms of formation of the contours of the Raman lines with frequencies in the 670–705 cm−1 range corresponding to the totally symmetric vibrations of the P-N bond in the R2NPX2 molecules were drawan. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 961–967, May 1997.  相似文献   

15.
The MP2 ab initio quantum chemistry methods were utilized to study the halogen‐bond and pnicogen‐bond system formed between PH2X (X = Br, CH3, OH, CN, NO2, CF3) and BrY (Y = Br, Cl, F). Calculated results show that all substituent can form halogen‐bond complexes while part substituent can form pnicogen‐bond complexes. Traditional, chlorine‐shared and ion‐pair halogen‐bonds complexes have been found with the different substituent X and Y. The halogen‐bonds are stronger than the related pnicogen‐bonds. For halogen‐bonds, strongly electronegative substituents which are connected to the Lewis acid can strengthen the bonds and significantly influenced the structures and properties of the compounds. In contrast, the substituents which connected to the Lewis bases can produce opposite effects. The interaction energies of halogen‐bonds are 2.56 to 32.06 kcal·mol?1; The strongest halogen‐bond was found in the complex of PH2OH???BrF. The interaction energies of pnicogen‐bonds are in the range 1.20 to 2.28 kcal·mol?1; the strongest pnicogen‐bond was found in PH2Br???Br2 complex. The charge transfer of lp(P) ? σ*(Br? Y), lp(F) ? σ*(Br? P), and lp(Br) ? σ*(X? P) play important roles in the formation of the halogen‐bonds and pnicogen‐bonds, which lead to polarization of the monomers. The polarization caused by the halogen‐bond is more obvious than that by the pnicogen‐bond, resulting in that some halogen‐bonds having little covalent character. The symmetry adapted perturbation theory (SAPT) energy decomposition analysis showes that the halogen‐bond and pnicogen‐bond interactions are predominantly electrostatic and dispersion, respectively.  相似文献   

16.
The electronic structure and thermochemical stability of the HOX-SO(3) (X = F, Cl, Br) complexes is studied using second-order M?ller-Plesset perturbation theory (MP2). The calculated dissociation energies of the HOF-SO(3), HOCl-SO(3), and HOBr-SO(3) complexes are 5.43, 6.02, and 5.98 kcal mol(-1) at MP2/6-311++G(3df,3pd) level, respectively. Anharmonic OH stretching frequencies of the HOX (X = F, Cl, Br) moieties along with the frequency shifts upon complex formation are calculated at the MP2/6-311++G(2df,2p) level. AIM and NBO analyses were also performed. Theoretical data strongly encourage performing of matrix-isolation studies of the title complexes and their spectroscopic identification.  相似文献   

17.
The structural stability of sulfamoyl halides NH(2)-SO(2)X (X is F, Cl and Br) were investigated by DFT-B3LYP/6-311+G** and ab initio MP2/6-311+G** calculations. From the calculations the molecules were predicted to exist only in the anti (XS bond is anti with respect to nitrogen lone pair) conformation with the possibility of very low abundance of the syn (SO(2) and NH(2) groups eclipse each other) form of only the fluoride. The equilibrium constant for the syn<-->anti conformational conversion of sulfamoyl fluoride was calculated to be 0.0172 that corresponds to an equilibrium mixture of about 2% syn and 98% anti at 298.15K. The vibrational frequencies were computed at DFT-B3LYP level for the stable anti conformer of the d(0) and d(2) (ND(2)-SO(2)X) deuterated species of the three molecules. Normal coordinate calculations were then carried out and the potential energy distributions were calculated for the molecules.  相似文献   

18.
High yield routes to the unstable halogen azides and isocyanates have permitted vacuum ultraviolet photoelectron spectra to be obtained for the chlorine and bromine azides, and the chlorine, bromine and iodine isocyanates. The results are compared with ab initio and semi-empirical calculations, leading to a reassignment of the photoelectron spectra of the parent acids, HN3 and HNCO in the high energy region. The halogen azide and isocyanate photoelectron spectra provide an interesting investigation into how the orbitals of a linear pseudohalide grouping are perturbed by an off-azis halogen atom. A photoelectron spectrum for the unknown molecule FNCO is predicted.  相似文献   

19.
稀土化合物中稀土离子和配位体的成键性质一直是人们注意研究的课题之一,一般认为属于离子键,但具有少量的共价性,然而,具体的数量级尚不清楚。本文利用Phillips,VanVechten和Levine理论,对LaX_3(X=F、Cl、Br、OH)晶体的键性和有关参数进行了具体计算,定量指出了镧离子和配体成键的离子性和共价性程度,比较了各晶体中有关的键参数,发现了和宏观物理现象相关的规律。1 理论公式  相似文献   

20.
The characteristics and structures of single-electron halogen bond complexes H3C…Br-Y(Y = H,CCH,CN,NC,C2H3) have been investigated by theoretical calculation methods.The geometries were optimized and frequencies calculated at the B3LYP/6-311++G level.The interaction energies were corrected for basis set superposition error(BSSE) and the wavefunctions obtained by the natural bond orbital(NBO) and atom in molecule(AIM) analyses at the MP2/6-311++G level.For each H3C…Br-Y complex,a single-electron Br bond is f...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号