首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and utilized to construct a voltammetric biosensor for trichloroacetic acid (TCA). The biosensor was prepared by immobilizing hemoglobin (Hb) on a glassy carbon electrode (GCE) that was modified with the Ag@GNRs. Cyclic voltammetry revealed a pair of symmetric redox peaks, indicating that direct electron transfer occurs at the Hb on the Ag@GNR-film. The electron transfer rate constant is as high as 2.32 s?1. The good electrocatalytic capability and large surface area of the Ag@GNR-film is beneficial in terms of electron transfer between Hb and the underlying electrode. The modified GCE, best operated at ?0.4 V (vs. SCE), exhibits electrocatalytic activity toward TCA in the 0.16 μM to 1.7 μM concentration range, with a 0.12 μM detection limit (at an S/N ratio of 3).
Graphical abstract Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and used to immobilize hemoglobin to construct an effective biosensor for trichloroacetic acid.
  相似文献   

2.
The authors describe a method for the fabrication of a nanohybrid composed of carbon dots (C-dots) and gold nanoparticles (AuNPs) by in-situ reduction of C-dots and hydroauric acid under alkaline conditions. The process does not require the presence of surfactant, stabilizing agent, or reducing agent. The hybrid material was deposited in a glassy carbon electrode (GCE), and the modified GCE exhibited good electrocatalytic activity toward the oxidation of nitrite due to the synergistic effects between carbon dots and AuNPs. The findings were used to develop an amperometric sensor for nitrite. The sensor shows a linear response in the concentration range from 0.1 μmol?L-1 to 2 mmol?L-1 and a low detection limit of 0.06 μmol?L-1 at the signal-to-noise ratio of 3.
Graphical abstract Fabrication, characterization and electrochemical behavior of a glassy carbon electrode modifid with carbon dots and gold nanoparticles for sensing nitrite in lake water.
  相似文献   

3.
A glassy carbon electrode (GCE) modified with polymeric nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid was prepared. The modified GCE was applied to sensitive and fairly selective electrochemical determination of the mycotoxin zearalenone. Electrocatalytic oxidation is performed in a solution containing 20 % (V/V) acetonitrile and 80 % (V/V) of 1 M perchloric acid. Cyclic voltammetry and square wave voltammetry revealed a well-defined electrocatalytic peak current at overpotential of +0.69 V versus Ag/AgCl. Under optimized experimental conditions, there is a linear relationship between anodic peak current and zearalenone concentration in the range from 0.03 to 35 ng?mL ̄1, and the detection limit is 0.01 ng?mL ̄1. The method was successfully applied to the analysis of zearalenone in spiked food samples and gave recoveries between 95.6 and 104.0 %.
Graphical abstract The nanocomposite (PdVC-PIL) was prepared by polymerization of ionic liquid monomer (PIL) in presence of Pd nanoparticles on Vulcan XC-72R carbon (PdVC). The solution containing nanocomposite was placed on the glassy carbon electrode (GCE). The voltammetry activity of modified electrode (PdVC-PIL/GCE) was compared to a bare GCE for zearalenone determination.
  相似文献   

4.
A temperature-responsive biosensing film consisting of the temperature-responsive block co-polymer poly (N-isopropylacrylamide)-b-poly(2-acrylamidoethyl benzoate) (referred to as PNIPAM-b-PAAE), graphene oxide (GO), and hemoglobin (Hb) was fabricated and used to modify a glassy carbon electrode (GCE). The film provides a favorable micro-environment for Hb to facilitate the electron transfer to the GCE. Hb at PNIPAM-b-PAAE/GO/Hb (PGH) film exhibits a couple of well-defined redox peaks with a formal potential of ?0.371 V (vs. SCE) and displays intrinsic electro-catalytic activity toward H2O2. The sensing film also shows temperature-tunable catalytic activity toward H2O2 that can be stimulated by temperature. Large peak currents can be seen in amperometry at 0.4 V (vs. SCE) in pH 7.0 phosphate buffer only if the temperature is above the lower critical solution temperature (LCST) of 32 °C. The response of the modified GCE is linear in the 0.1 to 3.7 μmol L?1 concentration range if operated at above 32 °C, but in the 0.2 to 3.7 μmol L?1 concentration range at below 30 °C. This behavior is attributed to the temperature-dependent phase transition of PNIPAM-b-PAAE and cooperative effect of GO. The strategy presented here in our perception meets the requirements of switchable sensors for use in bioscience and biotechnology.
Graphical abstract A temperature-responsive biosensing film consisting of temperature-responsive polymer, graphene oxide and hemoglobin has been fabricated. This film displays favorable electrochemical property and good electro-catalytic activity toward H2O2. It also exhibits catalytic activity change upon temperature stimuli.
  相似文献   

5.
The authors describe a composite material prepared from carbon nanohorns and poly(2-aminopyridine) that was obtained by electrochemical polymerization of 2-aminopyridine on carbon nanohorns. The material was used to modify a glassy carbon electrode (GCE) to obtain a sensor for non-enzymatic determination of hydrogen peroxide. The modified GCE was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The modified electrode is shown to display excellent electrical conductivity and catalytic activity towards hydrogen peroxide, mainly due to the large specific surface area of carbon nanohorns, the good electron charge transfer properties resulting from the use of poly(2-aminopyridine), and their synergistic effect. The response of the modified GCE (best operated at a working potential of ?0.45 V vs. SCE) to H2O2 is linear in the 0.05 to 8 mM concentration range. The limits of detection (LOD) and quantitation (LOQ) are 3.6 μM and 12.4 μM, respectively. The electrode is selective, stable and reproducible, this making it a promising tool for non-enzymatic determination of hydrogen peroxide.
Graphical abstract A glassy carbon electrode was modified with carbon nanohorns and poly(2-aminopyridine) to obtain a sensor for H2O2
  相似文献   

6.
A strategy was developed for the voltammetric determination of the antibiotic drug levofloxacin (LV) based on a glassy carbon electrode modified with a composite consisting of poly(o-aminophenol) and graphene quantum dots (PoAP/GQD) that was fabricated by electropolymerization. The PoAP/GQD composite provides a large surface area and sensing interface and strongly promotes the oxidation current of LV. Under optimal conditions, the modified GCE displays an oxidation peak current (best measured at a working voltage of 1.05 V vs. SCE) that is linearly related to the levofloxacin concentration in the range from 0.05 to 100 μM, and the detection limit is 10 nM (at an S/N of 3). The method was applied to the determination of levofloxacin in spiked milk samples where is gave recoveries between 96.0 and 101.0 %.
Graphical Abstract We describe a one-step electrochemical polymerization method to synthesize a layer of conductive film of poly(o-aminophenol) and graphene quantum dots (PoAP/GQD) onto a glassy carbon electrode (GCE) surface. The composite film exhibited high electro catalytic activity for the quantitative determination of levofloxacin by stripping voltammetry.
  相似文献   

7.
A nanocomposite consisting of cadmium oxide decorated with carbon nanotubes (CdO.CNT NC) was prepared by a wet-chemical technique, and its optical, morphological, and structural properties were characterized by FTIR, UV/Vis, FESEM coupled to XEDS, XPS, and XRD methods. A flat glassy carbon electrode was modified with the nanocomposite to obtain a sensor for L-glutathione (GSH) which displays improved sensitivity, a large dynamic range and good long-term stability. The calibration plot (best acquired at a voltage of 0.5 V) is linear (r 2 = 0.99) in the 0.1 nM to 0.01 M GSH concentration range. The detection limit is as low as 30.0 pM, and the sensitivity is ~9.49 μA?μM?1?cm?2. To the best of our knowledge, this is the first report on the determination of GSH using such a modified glassy carbon electrode (GCE) in combination with I-V method. The GCE was applied to the selective determination of GSH in spiked rabbit serum samples and gave acceptable results.
Graphical abstract A selective glutathione biosensor based on wet-chemically prepared CdO.CNT/Nafion/GCE was fabricated by reliable I-V method and shows good analytical parameters such as high sensitivity, low detection limit, long-term stability, and large dynamic range.
  相似文献   

8.
A composite material obtained by ultrasonication of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) was loaded with manganese dioxide (MnO2), poly(diallyldimethylammonium chloride) and gold nanoparticles (AuNPs), and the resulting multilayer hybrid films were deposited on a glassy carbon electrode (GCE). The microstructure, composition and electrochemical behavior of the composite and the modified GCE were characterized by transmission electron microscopy, Raman spectra, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The electrode induces efficient electrocatalytic oxidation of dopamine at a rather low working voltage of 0.22 V (vs. SCE) at neutral pH values. The response is linear in the 0.5 μM to 2.5 mM concentration range, the sensitivity is 233.4 μA·mM ̄1·cm ̄2, and the detection limit is 0.17 μM at an SNR of 3. The sensor is well reproducible and stable. It displays high selectivity over ascorbic acid, uric acid and glucose even if these are present in comparable concentrations.
Graphical abstract Gold nanoparticles were self-assembled onto the surface of the MnO2 decorated graphene oxide-carbon nanotubes composites with poly(diallyldimethylammonium chloride) (PDDA) as a coupling agent. Further, a sensitive electrochemical sensor of dopamine was developed via immobilizing this nanocomposite on a glassy carbon electrode (GCE).
  相似文献   

9.
We describe the preparation of a nanohybrid consisting of nitrogen doped reduced graphene oxide and CuS nanoparticles (N-rGO/CuS) by in-situ microwave irradiation at weight ratios of 25/75, 50/50, and 75/25. The resulting nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, FTIR, spectroscopy, scanning electron and transmission electron microscopy, electrochemically by cyclic voltammetry and electrochemical impedance analysis. It is shown that the CuS nanoparticles are evenly decorated onto the N-rGO surface. The nanohybrids was placed on glassy carbon electrode (GCE) where they showed electro-reductive activity towards picric acid, typically at working voltages between ?0.2 and ?0.8 V (vs. SCE). Effects of pH value and scan rate were evaluated, and it is shown that two electrons are involved in electro-reduction. The detection limits of the GCE modified with various N-rGO/CuS hybrids (with 25/75, 50/50, and 75/25 wt%) are 6.2, 3.2, and 0.069 μM respectively. The method demonstrates its applicability in sensing of picric acid with good reproducibility.
Graphical abstract Nitrogen doped reduced graphene oxide nanohybrids was synthesized for the detection of picric acid. A straightforward and preconcentration free analysis of picric acid was successfully demonstrated at nanomolar levels using the nanohybrids.
  相似文献   

10.
The work describes a hybrid electrochemical sensor for highly sensitive detection of the anesthetic lidocaine (LID). Porous carbon (PC) was synthesized from an isoreticular metal-organic framework-8 (IRMOF-8) and drop cast onto a glassy carbon electrode (GCE). A layer of a molecularly imprinted polymer (MIP) layer was then fabricated in situ on the modified GCE by electro-polymerization, with LID acting as the template and resorcinol as the functional monomer. Hexacyanoferrate is used as an electrochemical probe. The electrical signal (typically acquired at 0.335 V vs. SCE) increases linearly in the 0.2 pM to 8 nM LID concentration range, with a remarkable 67 fM detection limit (at an S/N ratio of 3). The sensor is stable and selective. Eventually, rapid and accurate detection of LID in spiked real samples was successfully realized.
Graphical abstract ?
  相似文献   

11.
The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.
Graphical abstract The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.
  相似文献   

12.
A nanocomposite consisting of cetyltrimethylammonium bromide (CTAB), Fe3O4 nanoparticles and reduced graphene oxide (CTAB-Fe3O4-rGO) was prepared, characterized, and used to modify the surface of a glassy carbon electrode (GCE). The voltammetric response of the modified GCE to 4-nonylphenol (NPh) was investigated by cyclic voltammetry and revealed a strong peak at around 0.57 V (vs. SCE). Under optimum conditions, the calibration plot is linear in the ranges from 0.03 to 7.0 μM and from 7.0 to 15.0 μM, with a 8 nM detection limit which is lower that that of many other methods. The modified electrode has excellent fabrication reproducibility and was applied to the determination of NPh in spiked real water samples to give recoveries (at a spiking level of 1 μM) between 102.1 and 99.1%.
Graphical abstract A nanocomposite consisting of cetyltrimethylammonium bromide (CTAB), Fe3O4 nanoparticles and reduced graphene oxide (CTAB-Fe3O4-rGO) was prepared and used to modify the surface of a glassy carbon electrode (GCE) for the differential pulse voltammetric (DPV) determination of 4-nonylphenol (NPh).
  相似文献   

13.
Three-dimensional structures comprising polypyrrole nanowires (PPyNWs) and molecularly imprinted polymer (MIP) were prepared by electropolymerization on the surfaces of a glassy carbon electrode (GCE). The modified GCE possesses both large surface area and good electrocatalytic activity for oxidizing dopamine (DA), and this leads to high sensitivity. The electropolymerized MIP has a large number of accessible surface imprints, and this makes the GCE more selective. Under optimal conditions and at a working voltage of typically 0.23 V (vs. SCE), the calibration plot is linear in the 50 nM to 100 μM DA concentration range, and the limit of detection is 33 nM. The sensor has been successfully applied to the analysis of DA in injections.
Graphical abstract Schematic of a three-dimensional nanocomposite based dopamine sensing platform based on the use of a molecularly imprinted polymer and poly(pyrrole) nanowires. The modified polypyrrole nanowires and molecularly imprinted polymer endowed high electrocatalytic capacity and good selectivity for dopamine recognition, respectively.
  相似文献   

14.
The authors describe a microsensor for the determination of biochemical oxygen demand. Different from established BOD detection schemes that incorporate a film of immobilized microbes, the sensitive element of this BOD microsensor consists of magnetite-functionalized Bacillus subtilis that can be immobilized and regenerated on an ultramicroelectrode array (UMEA). Modification and regeneration are magnetically controlled. The oxygen consumed is amperometrically quantified by using an UMEA modified with palladium nanoparticles and reduced carboxy graphene. The assay can be performed within 5 min owing to the fast mass transfer of the magnetite-functionalized microbes on the surface of the UMEA. The calibration plot, best acquired at a voltage of -0.4 V vs. Ag/AgCl, is linear in the 2 to 15 mg?L?1 BOD concentration range. A critical comparison with other BOD sensor shows the sensitivity of this sensor to be largely improved. It was successful applied to the determination of BOD in spiked water samples.
Graphical Abstract Schematic presentation of the novel biochemical oxygen demand (BOD) microsensor. The sensitive element can be modified and renewed on ultramicroelectrode array by using a magnet. The response time and the sensitivity of the microsensor are largely improved.
  相似文献   

15.
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of ?0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity.
Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
  相似文献   

16.
An electrochemical approach is introduced for synthesis of carbon dots (CDs) by exfoliating graphite rods at a voltage of 15 V in an electrolyte consisting of a mixture of water and two ionic liquids. It is found that the size of the CDs can be tuned by varying the fraction of water in the mixed electrolyte; CDs in sizes of 4.9, 4.1 and 3.1 nm are obtained if the electrolyte contains water in fractions of 24, 38 and 56 %, respectively. The CDs have a quantum yield of almost 10 % and display the typical excitation wavelength-dependent maxima of photoluminescence, strongest at excitation/emission wavelengths of 360/440 nm. Fourier transform infrared and X-ray photoelectron spectroscopy show the CDs to have oxygen functional groups on their surface which strongly improve solubility. The CDs were applied to image cells of the electricity-producing bacteria Shewanellaoneidensis MR-1.
Graphical Abstract An electrochemical approach is introduced to synthesize carbon dots by exfoliating graphite rods in mixed electrolyte of water and ionic liquids. The increasing size of carbon dots was realized by reducing the volume of water in the mixed electrolyte. The carbon dots were used to fluorescently image the electricity-producing bacterium Shewanellaoneidensis MR-1.
  相似文献   

17.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
  相似文献   

18.
This article reports on a novel aptamer-based platform for the quantitation of urea by using an aptamer with high affinity and selectivity for urea. The surface of a glassy carbon electrode (GCE) was modified by drop casting a cocktail consisting of carbon nanotubes and reduced graphene oxide (rGO) decorated with platinum-gold nanoparticles. The urea aptamer was then immobilized on the nanocomposite via covalent conjugation. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to trace the modification of the GCE. Binding of urea caused the aptamer to be folded, and this result in an inhibition of the interfacial charge transfer rate when using hexacyanoferrate as an electrochemical redox probe. The change in redox current was quantified by differential pulse voltammetry, typically at a working voltage of 0.22 V vs. Ag/AgCl. The assay has a 1.9 pM detection limit, and the response is linear up to 150 nM concentration of urea. The superior selectivity and affinity of aptamer-modified GCE makes it a most useful tool for analysis of urea present in very low concentrations.
Graphical abstract Schematic representation of different steps of aptasensor fabrication.
  相似文献   

19.
Gold nanoparticles (AuNPs) were electrodeposited on the surface of a glassy carbon electrode (GCE) and then treated with a mixture of a thiolated DNA sequence (p-63; with high affinity for bisphenol A) and free bisphenol A (BPÀ). Pyrrole was then electropolymerizaed on the surface of the GCE to entrap the BPA@p-63 complex. BPA is then extracted with acetic acid solution to obtain MIP cavities where the embedded DNA sequence acts as the binding site for BPA. Scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to characterize the surface of the modified GCE. Under the optimum conditions, the assay has a dynamic range that covers the 0.5 fM to 5 pM BPA concentration range and an 80 aM detection limit. It was applied to the quantitation of BPA in (spiked) milk, milk powder and water samples and gave acceptable recoveries.
Graphical Abstract Schematic of the procedure for aptamer-based detection of BPA using unique features of the aptamer-based modified electrodes and MIP-based sensors. This assay has high sensitivity and good selectivity. It can presumably be transferred to other detection schemes for small molecules.
  相似文献   

20.
A conducting polymer composite was prepared from nano-sized hydroxyaptite (nHAp) doped into poly(3,4-ethylenedioxythiophene) (PEDOT) and then electrodeposited on a glassy carbon electrode (GCE). The nHAp carries carboxy groups and therefore is negatively charged at moderate pH value. When doped into PEDOT (PEDOT-nHAp), it forms a uniform and stable film that exhibits low electrochemical impedance, a large specific surface, and high activity toward the electrochemical oxidation of nitrite. Under optimized conditions and at a relatively low working potential of 0.78 V (vs. SCE), the modified GCE exhibited a linear amperometric response in the 0.25 μM to 1.05 mM nitrite concentration range, and the limit of detection is as low as 83 nM.
Graphical abstract A highly sensitive nitrite sensor was developed based on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carboxyl group functionalized hydroxyapatite nanoparticles, which exhibited a large surface area and good conductivity and stability.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号