首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Bridged Binuclear Titanocene Compounds – Crystal Structure of Cl2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiCl2 · PhMe Starting from Cp2(Me)Si–Si(Me)Cp2 1 the complexes X2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiX2 (X = Cl ( 2 a ); X = Me ( 3 )) were synthesized. The compounds were characterized by means of their 1H‐ and 13C‐n.m.r. and MS‐spectra. The crystal structure of 2 a · PhMe was determined.  相似文献   

2.
In the reaction of C5H5Co(CO)(C3F7)I with isonitriles in the molár ratio 11 the brown complexes C5H5Co(CNR)(C3F7)I are formed. The fluorine atoms of the α-CF2 groups are diastereotopic because of the asymmetric center at the Co atom. With (—)-α-phenylethylisonitrile a pair of diastereoisomers is obtained which could not be separated.C5H5Co(CO)(C3F7)I and C5H5Co(CNR)(C3F7)I react with excess isonitrile with the formation of benzene soluble, yellow salts [C5H5Co(CNR)2(C3F7)]+I?, which can be transformed into the corresponding PF?6 salts. The new compounds were characterised by C, H, N, Co analyses, molecular weight determinations, IR, 1H NMR, 19F NMR, 13C NMR, ESCA and mass spectra.  相似文献   

3.
Addition of methoxide to either geometric isomer of the benzylidene complex [(η-C5H5)Re(NO)(PPh3)(CHC6H5)]+PF6? (1t, 1k) affords (η-C5H5)Re(NO)(PPh3)(CH(OCH3)C6H5 (2t, 2k) in which a new chiral center has been generated stereospecifically or with high stereoselectivity. Reaction of 2t and 2k with Ph3C+PF6? results in the chemospecific abstraction of a methoxy group and the stereospecific regeneration of 1t and 1k, respectively.  相似文献   

4.
The influence of SeOCl2 on the polymerization of propylene by TiCl3–Al(C2H5)3, and the temperature dependence of the stereospecificity of the catalyst, TiCl3–Al(C2H5)3, have been investigated. SeOCl2 decreases the rate of polymerization and increase the stereospecificity of the catalyst, which could be explained on the basis of a decrease of the concentration of Al(C2H5)3 accompanied by a reaction between Al(C2H5)3 and SeOCl2. On the other hand, the stereospecificity of the catalyst, TiCl3–Al(C2H5)3, increases gradually with a decrease in polymerization temperature from 40 to 0°C. From these results, we conclude that SeOCl2 exerts no essential influence on the polymerization of propylene by TiCl3–Al(C2H5)3, and that the stereospecificity of the catalyst is attributed mainly to the reducing ability of the organometallic compound.  相似文献   

5.
The syntheses of the novel cyclopentadienylphosphinevinylidenerhodium complexes C5H5Rh(CCHR)(PPri3) (R = Ph, Me, H) and, for R = Ph, of the isomeric alkynyl hydrido compound C5H5 RhH(C2Ph)(PPri3) are reported. The square-planar complexes trans-[RhCl(RC2H)(PPri3)2] (IIa, IIb), which in solution are in equi-librium with the five-coordinated pyridine to give the octahedral compounds RhHCl(C2R)(PRri3)2(py) (VIa, VIb). Treatment of Via, VIb with NaC5H5 gives the vinylidene complexes IVa, IVb in good yield. C5H5Rh(CCH2)(PPri3) (IVc) is directly obtained from trans-[RhCl(C2H2)(PPri3)2] (IIc) and NaC5H5. Mechanistic studies confirm that the reaction of VIa, VIb with the cyclopentadienide anion primarily gives, by elimination of HCl, the rhodium(I) compounds trans-[Rh(C2R)(py)(PPri3)2] (VIIIa, VIIIb), which react with cyclopentadiene, possibly via trans-[Rh(C2R)(η2-C5H6)(PPri3)2](X) as an intermediate, to give C5 VIIIa with cyclopentadiene in presence of water gives the complex C5H5RhH(C2Ph)(PPri3), which isomerizes only slowly to form IVa and, therefore, is not an intermediate in the reaction of VIIIa and C5H6 to give IVa. The crystal structure of IVa has been determined. The RhCC arrangement is almost linear. The RhC distance is significantly shorter than in carbenerhodium complexes, which, in agreement with 13C NMR data and MO calculations, indicates a high degree of multiple bonding.  相似文献   

6.
η5C5H5Ti(CH3)Cl2 and η5-C5H5Ti(C2H5TiCl2 have been synthesized. The reactivity of the methyl compound is much greater than that of the closely related sandwich compound, (η5-C5H5)2Ti(CH3)Cl, but the thermal stability is comparable.  相似文献   

7.
A reaction between (η5-C5Me5)TiCl3 and C5H5Tl in benzene solution has afforded (η5-C5Me5)(η5-C5H5)TiCl2 (I) in quantitative yield. (η5-C5Me5)(η5-C5H5)HfCl2 (III) has been prepared in 83% yield from a reaction between (η5-C5Me5)HfCl3 and C5H5Na·DME in refluxing toluene solution. The crystal and molecular structures of (η5-C5Me5)(η5-C5H5TiCl2 (I), (η5-C5Me5)(η5-C5H5)ZrCl2 (II) and (η5-C5Me5)(η5-C5H5HfCl2 (III) have been determined from X-ray data measured by counter methods. The three compounds are isostructural, crystallizing in the orthorhombic space group Pnma. The cell constants are: (I): a 9.873(1), b 12.989(3), c 11.376(4) Å and Dcalc 1.45 g cm?3 for Z = 4; (II): a 9.930(3), b 13.231(9), c 11.628(3) Å and Dcalc 1.58 g cm?3 for Z = 4; (III): a 9.938(1), b 13.156(2), c 11.582(2) Å and Dcalc 1.97 g cm?3 for Z = 4. In each case the metal atom resides on a crystallographic mirror plane which bisects both cyclopentadienyl rings and the ClMCl bond angle. The MCl bond lengths are 2.3518(9) for I, 2.4421(9) for II and 2.415(1) Å for III. The metal—cyclopentadienyl and metal—pentamethylcyclopentadienyl bond distances average 2.38(5) and 2.42(2) Å for I, 2.50(4) and 2.53(2) Å for II, and 2.48(4) and 2.50(1) Å for III respectively.  相似文献   

8.
The reaction of [RuHCl(CO)(PPh3)3] with 8-hydroxyquinoline has been examined and a novel ruthenium(II) complex – [RuCl(CO)(PPh3)2(C9H6NO)] – has been obtained. This compound has been studied by IR, UV–Vis (absorption and emission), 1H and 31P NMR spectroscopy, and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the complex have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the compound has been discussed on this basis.  相似文献   

9.
The mixed‐amide phosphinates, rac‐phenyl (N‐methylcyclohexylamido)(p‐tolylamido)phosphinate, C20H27N2O2P, (I), and rac‐phenyl (allylamido)(p‐tolylamido)phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)‐(Cl)P(O)(OC6H5)(NHC6H4p‐CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH‐cyclo‐C6H11) was synthesized for the first time and used for the synthesis of rac‐phenyl (benzylamido)(cyclohexylamido)phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed‐amide phosphinates are discussed. The P atom in each compound is in a distorted tetrahedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p‐tolylamido substituent makes a longer P—N bond than those involving the N‐methylcyclohexylamido and allylamido substituents. In (III), the differences between the P—N bond lengths involving the cyclohexylamido and benzylamido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen‐bonding interactions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).  相似文献   

10.
The reaction of [RuHCl(CO)(PPh3)3] with pyrazine has been examined and a ruthenium(II) complex – [RuHCl(CO)(PPh3)2(C4H4N2)] -- has been obtained. The compound has been studied by IR, UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with density functional theory (DFT). The spin-allowed singlet--singlet electronic transitions of the complex have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the compound has been discussed on this basis.  相似文献   

11.
The ring-substituted bis(cyclopentadienyl)silanesMe 2Si(C5H5) (MeC5H4) (1a) andMe 2Si(MeC5H4)2 (2a) could be prepared by the reactions ofMe 2SiCl2 with C5H5Na andMeC5H4Na or only withMeC5H4Na, respectively. Metallation of1 a or2 a withn-BuLi and following reaction with TiCl4 led to the first ringsubstituted [1]titanocenophanes,Me 2Si(C5H4) (MeC5H3)TiCl2 (1 b) orMe 2Si(MeC5H3)2 TiCl2 (2 b), respectively. On reaction with NaI,1 b yieldedMe 2Si(C5H4) (MeC5H3)TiI2 (1 c). Structural assignments of the compounds could be made on the basis of their1H NMR spectra.
  相似文献   

12.
《Polyhedron》1999,18(20):2575-2578
A synthesis of the title compound by hydrolysis of OsH(C6H5)(CO)(PtBu2Me)2 has the advantage that the product shows 1H NMR spectra free of the influence of hydrogen bonding to water impurity. In the solid state, the hydroxyl group interacts weakly with that of a neighbor. The Os–OH bond is rapidly split by H2, to give H2O and Os(H)2(H2)(CO)(PtBu2Me)2.  相似文献   

13.
Treatment of the mono(salicylaldiminato)titanium complexes {3-But-2-(O)C6H3CHN(Ar)}TiCl3(THF) (Ar = C6H5, 2,4,6-Me3C6H2 or C6F5) with the potassium β-enaminoketonates (C6H5)NC(CH3)C(H)C(R)OK (R = CH3, CF3) yielded the first examples of heteroligated (salicylaldiminato) (β-enaminoketonato)titanium dichloride complexes. The complex {3-But-2-(O)C6H3CHN(C6H5)}{(C6H5)NC(CH3)C(H)C(CH3)O}TiCl2 was structurally characterized by X-ray diffraction and has an orientation with trans-O,O,cis-Cl,Cl, cis-N,N distorted octahedral geometry. These complexes polymerize ethene when activated with MAO; the highest productivity, 5650 kg PE (mol metal)−1 h−1 atm−1, was afforded by {3-But-2-(O)C6H3CHN(C6F5)}{(C6H5)NC(CH3)C(H)C(CF3)O}TiCl2 at 60 °C.  相似文献   

14.
[ReCl2(N2COPh)(C10H14N2)(PPh3)2] has been obtained in the reaction of benzoylhydrazido-Re(V) with an excess of nicotine. The [ReCl2(N2COPh)(C10H14N2)(PPh3)2] complex crystallizes in the monoclinic space group P21/n. The complex was characterized by infrared, Ultaviolet-visible, 1H NMR and magnetic measurements.  相似文献   

15.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

16.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

17.
[Fe2(CO)6(μ-CO)(μ-C(C6H5)C(C6H5)H)]? reacts with triethyloxonium tetrafluoroborate to yield Fe2(CO)6(μ-COC2H5)(μ-C(C6H5)C(C6H5)H). This compound is smoothly transformed at room temperature or more quickly in refluxing hexane into the title compound resulting from the coupling of the ethoxycarbyne and 1,2-diphenylethenyl bridges.  相似文献   

18.
The restricted rotation of the olefin ligands L = dimethyl maleate and dimethyl fumarate in complexes of the type C5H5Mn(CO)2L and C5H5Cr(CO)-(NO)L, respectively, has been investigated on the basis of their temperature-dependent 1H NMR spectra. The olefinic ligand is arranged preferably in a position where the CC double bond is parallel to the plane of the cyclopentadienyl ring. The possible stereoisomers are discussed using this model. The 1H NMR spectra of C5H5Cr(CO)(NO)(trans-CH3OOCCHCHCOOCH3) provide direct evidence that the configuration (R or S) at the metal is stable up to 120°C, and that the restricted motion of the olefin is exclusively rotation around the metal—olefin bond. The activation barriers of the olefin rotation are found to be appreciably lower in the C5H5Mn(CO)2L complexes (ΔG(TC) 11–12 kcal mol?1) than in the isoelectric C5H5Cr(CO)(NO)L compounds (ΔG(TC) 15–20 kcal mol?1).  相似文献   

19.
Studies have been made of photochemical and thermal reaction sequences through which bisubstituted acetylenes are transformed in (C5H5)Co-carbonyl reaction systems into cyclobutadiene and cyclopentadienone complexes and hexasubstituted benzenes. A primary intermediate observed by its IR spectrum in low-temperature photochemical reactions of (C5H5)Co(CO)2 with diphenyl alkynes RCCR is the mixed mononuclear species (C5H5)Co(CO)(RCCR). At room temperature this species is converted by excess alkyne into the cyclopentadienone complex (C5H5)Co(R4C4CO). We have isolated from these reactions systems an important intermediate the mixed binuclear compound(C5H5)2Co2(μ-CO)(RCCR). In the presence of excess alkyne this compound is thermally converted either to the cyclobutadiene or to the cyclopentadienone complex of (C5H5)Co, depending on the partial pressure of CO in the reaction system. The mixed binuclear compound forms a catalyst for the cyclotrimerization of excess 2-butyne. The fluxional binuclear metallocycle (C5H5)2Co2[(CH3)4C4], which is formed by sodium amalgam reduction of (C5H5)Co(CO)I2 in the presence of 2-butyne, is a true catalyst for alkyne cyclotrimerization.  相似文献   

20.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号