首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical behaviours of a brass alloy in 0.1 M nitric acid, including the hyamine inhibitor with concentrations between 2.5 × 10?4 M and 1.0 × 10?5 M, were studied. For this purpose, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR) techniques, and flame atomic absorption spectroscopy (FAAS) were utilised. The inhibitor molecules adsorbed on the brass surface were calculated to be in good agreement with the Langmuir adsorption isotherm and the standard free enthalpy of adsorption (??G ads ° ). Hyamine effectively improved the corrosion inhibition of brass and acted as a mixed-type inhibitor on alloy surfaces. The surface morphology of the alloy was also clarified by optical microscopic and SEM techniques. A theoretical study of the corrosion inhibition efficiency of hyamine molecule was carried out using density functional theory (DFT) at the B3LYP/6-311G(d,p) basis set level.  相似文献   

2.
Herein, 2-ethyl phenyl-2,5-dithiohydrazodicarbonamide (2EPDCA) was synthesised and tested as a corrosion inhibitor for mild steel (MS) and copper (Cu) in 1 M HCl and 3.5% NaCl, respectively. Fourier transform infrared spectroscopy (FT-IR) and (NMR) nuclear magnetic resonance (1H, 13C) were used to identify the chemical structure. Both experimental and computational approaches have been conducted to evaluate inhibitor efficiency on both metal systems. The electrochemical results showed that the 2EPDCA inhibition efficiency for MS systems was 95% at 1 × 10?2 M, while in copper systems it was 97.5% at 1 × 10?2 M. The Langmuir adsorption isotherm was fitted using adsorption surface coverage data, and for inhibitor in both systems, the kind of adsorption was mixed (physisorption and chemisorption). Through scanning electron microscopy (SEM), EDX, and atomic force microscopy (AFM) tests, we have confirmed the presence of the inhibitor molecules on the metal surface in both systems. Quantum chemistry simulations indicate that the superior corrosion inhibition efficacy of 2EPDCA on copper compared to mild steel surfaces is attributable to the former's greater electron donating propensity on copper. The adsorption of 2EPDCA molecules on Fe (110) and Cu (111) surfaces was further verified by molecular dynamic simulations, with the former having a greater adsorption energy. The results indicate that the corrosion inhibitor was effective even in harsh conditions, and it can be thought of as a novel corrosion inhibitor for mild steel and copper that provides good protection.  相似文献   

3.
Natural biopolymer chitosan organic compound (COC) has been used as a copper corrosion inhibitor in molar hydrochloric medium. This study was conducted by weight loss, polarization curves and electrochemical impedance spectroscopy measurements. Scanning electron microscopy, energy dispersive X-ray spectrometry and atomic force microscopy studies were used to characterize the surface of uninhibited and inhibited copper specimens. The study of the temperature effect was carried out to reveal the chemical nature of adsorption. The inhibition efficiency tends to increase by increasing inhibitor concentration to reach a maximum of 87% at 10?1 mg L?1. The values of inhibitor efficiency estimated by different electrochemical and gravimetric methods indicate the performance of copper in HCl medium containing COC. Adsorption of COC was found to follow the Langmuir adsorption isotherm. In order to get a better understanding of the relationship between the inhibition efficiency and molecular structure of COC, quantum chemical and molecular dynamics simulation approaches were performed to get a better understanding of the relationship between the inhibition efficiency and molecular structure of chitosan.  相似文献   

4.
The inhibition efficiency of 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid (PTCA) against mild steel (MS) corrosion was investigated in acidic solution by using quantum chemical calculations based on Density Functional Theory (DFT) method and electrochemical measurements. The electrochemical impedance spectroscopy (EIS), potentiodynamic, potential zero charge (pzc) analysis and electrochemical noise (EN) measurements at various concentrations (from 0.1 to 10 mM) and immersion times were utilized in experimental part. The surface analysis was achieved scanning electron microscope (SEM) and contact angle measurements in the absence and presence of 10 mM PTCA. According to DFT results, PTCA exhibited 3.737 eV band gap and 8.130 Debye dipole moment which were a signal of potentially convenient corrosion inhibitor properties. PTCA has a remarkable corrosion inhibition capability to mild steel, which inhibited both anodic and cathodic corrosion rates, relying on it's physically adsorption on the metal solution interface and protection ability was increased with increasing PTCA concentration. The obtained adsorption equilibrium constant was 11.11 × 103 M-1 and calculated standard free energy of adsorption was ?33.03 kJ mol?1. The determined activation energy values were 55.58 kJ mol?1 and 96.86 kJ mol?1 in 0.5 M HCl in the absence and presence of 10 mM PTCA, respectively. PTCA demonstrated a strong inhibition efficiency of 98.3%, after 168 h immersion, according to the EIS results. As a consequently, we recommend that PTCA is a convenient inhibitor in 0.1 M HCl for mild steel protection against corrosion.  相似文献   

5.
The inhibiting efficiency of 2-mercapto-1-methylimidazole (MMI) on copper corrosion in sulfuric acid was investigated at 30 °C. Its effectiveness was assessed through electrochemical impedance spectroscopy, potentiodynamic polarization and gravimetric measurements. The results of study reveal that the inhibition efficiency of MMI depends on its concentration and attains approximately 81% at 10?4 M. The inhibitor was adsorbed on the copper surface according the Langmuir adsorption isotherm model. The value of standard free energy of adsorption was calculated from this isotherm.  相似文献   

6.
The inhibition effect of cetyl trimethyl ammonium bromide (CTAB) on the corrosion of mild steel in 1.0 mol L?1 hydrochloric acid (HCl) has been studied at different temperatures (25–60°C) by weight loss and potentiodynamic polarization methods. The results reveal that CTAB behaves as an effective inhibitor in 1.0 mol L?1 HCl, and the inhibition efficiency increases with the inhibitor concentration. Polarization curves show that CTAB is a mixed-type inhibitor in hydrochloric acid. The results obtained from weight loss and polarizations are in good agreement. The effect of immersion time on corrosion inhibition has also been examined and is discussed. The adsorption of inhibitor on mild steel surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. The inhibition effect is satisfactorily explained by the parameters.  相似文献   

7.
Inhibition of the corrosion of mild steel in molar hydrochloric acid by two calixarenes, including the effect of inhibitor concentration and temperature, has been investigated by use of weight loss and electrochemical measurements (polarisation and impedance). The results obtained showed that the rate of corrosion decreased substantially in the presence of the compounds, with maximum inhibition of 98.2 % by one of the compounds at a concentration of 10?3 M. The effect of temperature on corrosion behaviour in the presence of different concentrations of the two new calixarenes was studied in the range 45–75 °C. The efficiency of inhibition by the compounds increased with increasing inhibitor concentration and was independent of temperature. Polarisation curves revealed that the calixarenes are mixed-type inhibitors. Adsorption of the inhibitors by the carbon steel surface obeyed the Langmuir adsorption isotherm. Some thermodynamic data for the dissolution and adsorption processes were also determined.  相似文献   

8.
The inhibitory effect of some new synthesized benzamide compounds on corrosion of mild steel in 1 M HCl solution has been studied by use of weight loss measurements and the electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibiting action is more pronounced with increasing concentration. Inhibition efficiency is maximum (approximately 99 %) at 10?3 M. Polarization measurements also show that the compounds act as mixed inhibitors. The cathodic curves indicate that reduction of protons at the mild steel surface occurs as a result of a pure activating mechanism. EIS measurements reveal increased transfer resistance with increasing inhibitor concentration. The presence of heteroatoms increases inhibition efficiency without causing a drastic change in adsorption mechanism, which follows the Langmuir isotherm model. Significant correlations were obtained between inhibition efficiency with the chemical indexes calculated, by use of the standard software Gaussian03, on the basis of density functional theory (DFT) at the B3LYP/6-31G** level of theory, indicating that variation of inhibition with inhibitor structure may be explained in terms of electronic properties. The effect of temperature on the corrosion behaviour of steel in 1 M HCl without and with inhibitors at 10?3 M was studied in the temperature range from 308 to 333 K, and the associated activation energy was determined.  相似文献   

9.
The inhibition behavior of 6-methyl-4,5-dihydropyridazin-3(2H)-one (MDP) on corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 was investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) measurements. The results indicated that the corrosion inhibition efficiency depends on concentration, immersion time, solution temperature, and the nature of the acidic solutions. It is also noted that MDP is at its the most efficient in 1 M HCl and least in 0.5 M H2SO4. The effect is more pronounced with MDP concentration. It is found that the inhibition efficiency attains 98 % at 5 × 10?3 M in 1 M HCl and 75 % at 5 × 10?2 in 0.5 M H2SO4. Polarization measurements showed that the MDP acts as a mixed inhibitor. EIS diagrams showed that the adsorption of MDP increases the transfer resistance and decreases the capacitance of the interface metal/solution. From the temperature studies, the activation energies in the presence of MDP were found to be superior to those in uninhibited medium. Finally, a mechanism for the adsorption of MDP was proposed and discussed.  相似文献   

10.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

11.
7-Cchloro-3-(4-methoxystyryl)quinoxalin-2(1H)-one (CMOSQ) and 7-chloro-2-(4-methoxyphenyl)thieno(3.2-b)quinoxaline (CMOPTQ) have been investigated for mild steel corrosion in 1 M HCl at different concentrations using weight loss measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy methods. Generally, inhibition efficiency of the investigated compounds was found to depend on inhibitor concentration and their structures. Comparitive results showed that CMOPTQ was the best inhibitor and the inhibition efficiency increased with increasing the concentration and attained 86 and 87 % at 10?3 M of CMOPTQ and 10?3 M of CMOSQ, respectively. Potentiodynamic polarization studies clearly reveal that these inhibitors act essentially as cathodic-type inhibitors. The inhibition efficiency increases with immersion time and reaches 95 % CMOPTQ at 24 h. The electrochemical impedance spectroscopy result showed that these compounds act by formation of film.  相似文献   

12.
The inhibitive effect of 2-aminoquinoline-6-carboxylic acid (AQC) against mild steel corrosion in 1?M HCl solutions was investigated using conventional weight loss, potentiodynamic polarization, linear polarization and electrochemical impedance spectroscopy methods. The weight loss results showed that AQC is an excellent corrosion inhibitor since its efficiency increased with the concentration to attain 91.8?% at 500?mg?l?1. Electrochemical polarization measurements revealed that AQC acted as a mixed-type inhibitor and the results of electrochemical impedance spectroscopy have shown that the change in the impedance parameters, charge transfer resistance and double layer capacitance, with the change in concentration of the inhibitor is due to the adsorption of the molecule leading to the formation of a protective layer on the surface of mild steel. The adsorption was assumed to occur on the steel surface through the active centers of the molecule. The inhibition action of AQC was discussed in view of Langmuir adsorption isotherm. Density functional theory calculations of quantum parameters were used to explain efficiency in relation with molecular structure.  相似文献   

13.
In this study, a novel green corrosion inhibitor called 2,2'-((1Z,1′Z)-((piperazine-1,4-diylbis(2,1-phenylene))bis(methanylylidene))bis(azanylylidene)) (PMA) has been tested against corrosion of carbon steel in 0.5 M H2SO4. Quantum and electrochemical methods were used to evaluate PMA's ability to inhibit the deterioration of carbon steel in an acidic environment. The results revealed that PMA acted as a mixed inhibitor, primarily anodic, whose inhibition action was enhanced by increasing its concentration. At 298.15 K, the maximum efficiency was around 91% with 1 × 10?3 M PMA in 0.5 M H2SO4. The results showed that the inhibition occurred due to adsorption of the PMA molecules on the surface. The adsorbed layer of PMA satisfied the Langmuir adsorption isotherm. The morphology of the surface was examined using scanning electron microscopy.  相似文献   

14.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

15.
The inhibitive action of 4-methyl pyrazole (4MP) against the corrosion of iron (99.9999%) in solutions of hydrochloric acid has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). At inhibitor concentration range (10?3–10?2 M) in 1.0 M acid, the results showed that 4MP suppressed mainly the anodic processes of iron corrosion in 1.0 M HCl by adsorption on the iron surface according to Temkin adsorption isotherm. Both potentiodynamic and EIS measurements reveal that 4MP inhibits the iron corrosion in 1.0 M HCl and that the efficiency increases with increasing inhibitor concentration. Data obtained from EIS were analyzed to model the corrosion inhibition process through an equivalent circuit.  相似文献   

16.
The efficiency of stearate as a corrosion inhibitor for magnesium alloy ZE41 has been studied in sodium sulfate medium, employing electrochemical techniques like potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of polarization study imply that stearate functions as a mixed-type corrosion inhibitor with a predominant anodic control. The adsorption of stearate on alloy surface is found to obey the Langmuir adsorption isotherm. The proposed inhibition mechanism involved adsorption of stearate onto metal surface, followed by precipitation of magnesium stearate within the microdefects of Mg(OH)2 surface film which enhanced the barrier effect of an otherwise porous partially protective film.  相似文献   

17.
Sodium tungstate and amoxicillin were used separately or combined in a solution containing 0.05 mol l?1 NaCl or inserted into cellulose acetate films as a corrosion inhibition method for American Iron and Steel Institute (AISI) 1020 steel. The electrochemical behavior of AISI 1020 steel was characterized using open‐circuit potential, anodic polarization and electrochemistry impedance spectroscopy. The inhibitor effect of tungstate anions was proved, and its combination with amoxicillin was considered inferior when tungstate was used alone. This behavior was attributed to weaker adsorption of amoxicillin when compared with the adsorption of tungstate anion both deposited on the alloy and into the cellulose acetate film on the steel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

19.
《印度化学会志》2022,99(12):100778
The effect of sodium metamizole as a corrosion inhibitor for carbon steel (CS) in 1 M hydrochloric acid at various concentrations was studied by using chemical (weight loss, WL) and electrochemical [electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP)] methods. The results of WL showed that the effectiveness of sodium metamizole as a CS preservative in a hydrochloric acid solution at room temperature raised by improvement of the concentration of the inhibitor and reached 82.87% at 300 ppm and 25 °C. The effect of temperature on the CS was studied and the thermodynamic parameters of activation and adsorption were computed and discussed. The results showed that the inhibition efficiency (IE) decreases with increasing temperature, suggestive of physisorption. This was collaborated by values of activation energy, which are all below 80 kJ mol?1 and free energy which are below 20 kJ mol?1. The adsorption mechanism was coherent with Langmuir adsorption model. Results of the PDP revealed that the inhibitor was adsorbed on CS surface by mixed type of behavior. Furthermore, EIS revealed the dip in the values of double-layer capacitance and improvement in the charge transfer resistance with increased dose of sodium metamizole. Surface examinations were performed using altered techniques. The theoretical studies were calculated to confirm the validity of the practical results and the results of both were compared with each other, demonstrating the validity of the results obtained.  相似文献   

20.
The corrosion inhibition of mild steel in hydrochloric acid solution in the presence of three different molecular weights of polyvinyl alcohol (PVA) designated as PVA-I, PVA-II, and PVA-III corresponding to 14,000, 72,000, and 125,000 g mol?1, respectively, was investigated using electrochemical impedance spectroscopy, linear polarization resistance (LPR), and potentiodynamic polarization techniques at 25°C. It was found that PVA of different molecular weights inhibited the corrosion of mild steel in the acid environment. Inhibition efficiency (η%) increases with increase in concentration of the polymers. LPR measurements clearly show that inhibition efficiency increases with increasing molecular weight in the order PVA-III > PVA-II > PVA-I. Polarization curves indicate that PVA functions as a mixed inhibitor affecting both the anodic metal dissolution and cathodic hydrogen evolution partial reactions of the corrosion process. The experimental data obtained fitted well into Langmuir adsorption isotherm model. Physical adsorption mechanism is proposed from the thermodynamic (free energy of adsorption) parameters obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号