首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas‐phase structure, hydrogen bonding, and cation–anion interactions of a series of 1‐(2‐hydroxyethyl)‐3‐methylimidazolium ([HOEMIm]+)‐based ionic liquids (hereafter called hydroxyl ILs) with different anions (X = [NTf2], [PF6], [ClO4], [BF4], [DCA], [NO3], [AC] and [Cl]), as well as 1‐ethyl‐3‐methylimizolium ([EMIm]+)‐based ionic liquids (hereafter called nonhydroxyl ILs), were investigated by density functional theory calculations and experiments. Electrostatic potential surfaces and optimized structures of isolated ions, and ion pairs of all ILs have been obtained through calculations at the Becke, three‐parameter, Lee–Yang–Parr/6‐31 + G(d,p) level and their hydrogen bonding behavior was further studied by the polarity and Kamlet–Taft Parameters, and 1H‐NMR analysis. In [EMIm]+‐based nonhydroxyl ILs, hydrogen bonding preferred to be formed between anions and C2–H on the imidazolium ring, while in [HOEMIm]+‐based hydroxyl ILs, it was replaced by a much stronger one that preferably formed between anions and OH. The O–H···X hydrogen bonding is much more anion‐dependent than the C2–H···X, and it is weakened when the anion is changed from [AC] to [NTf2]. The different interaction between [HOEMIm]+ and variable anion involving O–H···X hydrogen bonding resulted in significant effect on their bulk phase properties such as 1H‐NMR shift, polarity and hydrogen‐bond donor ability (acidity, α). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Recent spectroscopic investigations of various amino acids report intriguing high‐pressure and low‐temperature behavior of NH3+ groups and their influence on various hydrogen bonds in the system. In particular, the variation of the intensity of NH3+ torsional mode at different temperatures and pressures has received much attention. We report here the first in situ Raman investigations of fully deuterated α‐glycine up to ∼20 GPa. The discontinuous changes in COO and ND3+ modes across ∼3 GPa indicate subtle structural rearrangements in fully deuterated α‐glycine. The decrease in the intensity of ND3+ torsional mode is found to be similar to that of undeuterated α‐glycine. The pressure‐induced stiffening of N D and CD2 stretching modes are discussed in the context of changes in the hydrogen‐bonding interactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The values of the enthalpy (53.3; 51.3; 20.0 kJ mol?1), entropy (?106; ?122; ?144 J mol?1K?1), and volume of activation (?29.1; ?31.0; ?cm3 mol?1), the reaction volume (?25.0; ?26.6; ?cm3 mol?1) and reaction enthalpy (?155.9; ?158.2; ?150.2 kJ mol?1) have been obtained for the first time for the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione 1 , with cyclohexene 4 , 1‐hexene 6 , and with 2,3‐dimethyl‐2‐butene 8 , respectively. The ratio of the values of the activation volume to the reaction volume (?VcorrVr ? n) in the ene reactions under study, 1 + 4 → 5 and 1 + 6 → 7 , appeared to be the same, namely 1.16. The large negative values of the entropy and the volume of activation of studied reactions 1 + 4 → 5 and 1 + 6 → 7 better correspond to the cyclic structure of the activated complex at the stage determining the reaction rate. The equilibrium constants of these ene reactions can be estimated as exceeding 1018 L mol?1, and these reactions can be considered irreversible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We report surface‐enhanced Raman scattering (SERS) spectra from 4‐mercaptopyridine (4‐Mpy) adsorbed on sub‐monolayers of α‐Fe2O3 nanocrystals (sphere, spindle, cube). The maximum enhancement factor has been estimated to be about 104 compared to that of 4‐Mpy in solution. A possible mechanism has been proposed that the charge transfer between the α‐Fe2O3 nanocrystals and the 4‐Mpy molecules is most likely responsible for the observed enhancement of Raman intensity of adsorbed 4‐Mpy molecules as surface plasmon resonances have not occurred. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
To explore the possibility of hydrogen bonding of a stable anion radical with DNA – component sugar, hormones, steroid, and so on (through hydroxyl group), as a first step, the possibility of hydrogen bonding of 1,3‐dinitrobenzene anion radical (1,3‐DNB??) with aliphatic alcohols was studied. It was found that 1,3‐DNB?? anion radical undergoes hydrogen bonding with alcohols: methanol, ethanol, and 2‐proponal. The hydrogen‐bonding equilibrium constant Keq and the (hydrogen‐bonding) rate constants k2 were evaluated through the use of linear scan and cyclic voltammetry theory and techniques. The Keq was found to be in the range of 1.4–6.0 m ?1, whereas the rate constants k2 were found to be in the range of 1.5–3.6 m ?1 s?1, depending upon the hydrogen‐bonding agent and the equation used for the calculation of the rate constants. The hydrogen‐bonding number n was found to be around 0.5 or 1.0. The implication of this study in, for example, the replication of DNA, the prevention of the formation of super oxide, and so on is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A series of 1,3‐bis(2′‐hydroxyethyl)imidazolium ionic liquids is reported where 1H NMR chemical shift values and thermal stabilities (Td), as determined by thermogravimetric analysis, are correlated with the hydrogen bonding capability of various anions ([Cl?], [Br?], [CF3CO2?], [NO2?], [MsO?], [NO3?], [TfO?], [BF4?], [NTf2?], and [PF6?]). Use of anions with the strongest hydrogen bonding capability, such as chloride [Cl?], bromide [Br?], and trifluoroacetate [CF3CO2?], led to the furthest observed downfield chemical shift values in DMSO‐d6 and the poorest thermal stabilities ([CF3CO2?] < 200 °C). Thermal stabilities in excess of 350 °C and upfield chemical shift values were observed for ionic liquids, which employed the weakly coordinating triflate [OTf?], tetrafluoroborate [BF4?], or bis(trifluoromethylsulfonyl)imide [NTf2?] anion. Optimized structures of selected ionic liquids, as determined by density functional theory calculations at the B3LYP/6‐31G + (d,p) level, indicated that the anion preferred to be located above the imidazolium ring and in close proximity to the hydroxyl groups. Calculated dissociation energies (ΔE) and a comparison of key bonding distances (C2―H, (C2)H···X, O―H, and (O)H···X) also confirmed this structural preference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The kinetics of nucleophilic bimolecular substitution reactions of γ‐functionalized allyl bromides with non‐substituted and p‐substituted sodium arenesulfinates has been studied. Both the structure of allyl bromides and nucleophilicity of arenesulfinate ions exerted a significant effect on the values of the kinetic parameters such as the second‐order rate constants k, activation energy EA, and changes in the entropy ΔS, enthalpy ΔH, and free energy ΔG of the formation of the activated complex from reactants. Based on the evaluation of kinetic parameters, the reactants could be arranged, according to their decreasing reactivity in the SN2‐reactions as follows: p‐toluenesulfinate ion > benzenesulfinate ion > p‐chlorobenzenesulfinate ion and 4‐bromo‐2‐butenenitrile > 1,3‐ dibromopropene, respectively. Comparison was also made between the kinetic data obtained and some delocalization reactivity indexes for both the substrates and nucleophiles. The enthalpy–entropy compensation effect was observed for the reactions of sodium arenesulfinates with γ‐functionalized allyl bromides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We studied the cleave of bis(p‐nitrophenyl) phosphate (BNPP) over a pH range of 7.0–12.0 in the presence of cationic micelles of cetyldiethylethanolammonium bromide, cetyldimethylethanolammonium bromide, cetylpyridinium bromide, cetyltrimethylammonium bromide, and cetylpyridinium chloride by using different α‐nucleophiles, viz acetohydroxamate, benzohydroxamate, salicylhydroxamate, butane‐2,3‐dione monooximate, and α‐benzoin oximate ions. With the use of α‐nucleophiles in cationic micellar media, the hydrolytic cleavage of BNPP was found to be approximately 105‐fold faster than its spontaneous hydrolysis. All reactions followed pseudo‐first‐order kinetics. The effect of various concentrations of cationic micelles for the reaction of BNPP and α‐nucleophiles has been studied. The variation of kobs values of the reactions depends on the micellar structure, that is, head groups, hydrophobic tail length, and counter ion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of different substituents on the kinetics of the reactions between 2‐amino‐benzamide and some of benzaldehyde derivatives have been spectrally investigated in the presence of formic acid. The proposed mechanism were challenged due to the determination of rate‐determining step (RDS) and also, to obtain the general rate law of the reaction. For all substituents, the reactions followed the second‐order kinetics and the partial orders of reactions were recognized with respect to each reactant. Electron withdrawing substituents on benzaldehyde ring increased the rate of reaction. Kinetic values (k and Ea) and associated activation parameters (ΔH?, ΔG? and ΔS?) of the reactions were determined. Both the Arrhenius and the Eyring equations were used to calculate activation energy. Comparison of magnitude of and T showed that the reactions were enthalpy controlled. Isokinetic plots for the reactions were plotted and linear relationship between and recognized that relative contribution of enthalpy and entropy to the overall free energy was the same in the reactions.  相似文献   

10.
The Fourier transform infrared (4000–400 cm−1) and Fourier transform Raman (3500–500 cm−1) spectra of 4‐hydroxy‐3‐(3‐oxo‐1‐phenylbutyl)‐2H‐1‐benzopyran‐2‐one (Warfarin) have been measured and calculated. The structure optimization has been made using density functional theory (DFT) calculations. Complete vibrational assignments of the observed spectra have been compared with theoretical wavenumbers. The wavenumber increasing in the methyl group shows the electronic hyperconjugation effect. The natural bond orbital (NBO) analysis reveals the hyperconjugation interaction and the intramolecular hydrogen bonding. The first‐order hyperpolarizability has been calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The structure, energetics, and bonding of the simplest carborane, H2C(H2)BH2 +, is determined by high level ab initio calculations. The molecule is bound by 35.5 kcalmol?1 with respect to the lowest energy dissociation products, CH4 + BH2 + which are produced without a dissociation barrier (i.e. no reverse activation energy) along the minimum energy pathway. A detailed analysis of the occupied valence orbitals shows that the bonding arises from three-centre-two-electron bonding through an unusual carbon-hydrogen-boron (CHB) bridge bond explaining the strong binding energy and the absence of a dissociation barrier. The possibility that CHB bridge bonds may play a role in CH sigma bond activation is discussed. Harmonic vibrational frequencies, infrared absorption intensities, and frequency shifts occurring for 10B, 13C, and D isotopic substitution are reported.  相似文献   

12.
Raman spectroscopy is an excellent technique for probing lithium intercalation reactions of many diverse lithium ion battery electrode materials. The technique is especially useful for probing LiFePO4‐based cathodes because the intramolecular vibrational modes of the PO43− anions yield intense bands in the Raman spectrum, which are sensitive to the presence of Li+ ions. However, the high power lasers typically used in Raman spectroscopy can induce phase transitions in solid‐state materials. These phase transitions may appear as changes in the spectroscopic data and could lead to erroneous conclusions concerning the delithiation mechanism of LiFePO4. Therefore, we examine the effect of exposing olivine FePO4 to a range of power settings of a 532‐nm laser. Laser power settings higher than 1.3 W/mm2 are sufficient to destroy the FePO4 crystal structure and result in the formation of disordered FePO4. After the laser is turned off, the amorphous FePO4 compound crystallizes in the electrochemically inactive α‐FePO4 phase. The present experimental results strongly suggest that the power setting of the excitation laser should be carefully controlled when using Raman spectroscopy to characterize fundamental lithium ion intercalation processes of olivine materials. In addition, Raman spectra of the amorphous intermediate might provide insight into the α‐FePO4 to olivine FePO4 phase transition that is known to occur at temperatures higher than 450 °C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The conformational analysis of the first representative of the Si‐alkoxy substituted six‐membered Si,N‐heterocycles, 1,3‐dimethyl‐3‐isopropoxy‐3‐silapiperidine, was performed by low‐temperature 1H and 13C NMR spectroscopy and DFT theoretical calculations. In contrast to the expectations from the conformational energies of methyl and alkoxy substituents, the Meaxi‐PrOeq conformer was found to predominate in the conformational equilibrium in the ratio Meaxi‐PrOeq : Meeqi‐PrOax of ca. 2 : 1 as from the 1H and 13C NMR study. The thermodynamic parameters obtained by the complete line shape analysis showed that the main contribution to the barrier to ring inversion originates from the entropy term of the free energy of activation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The competitive 1,5‐electrocyclization versus intramolecular 1,5‐proton shift in imidazolium allylides and imidazolium 2‐phosphaallylides has been investigated theoretically at the DFT (B3LYP/6‐311 + +G**//B3LYP/6‐31G**) level. 1,5‐Electrocyclization follows pericyclic mechanism and its activation barrier is lower than that for the pseudopericyclic mechanism by ~5–6 kcal mol?1. The activation barriers for 1,5‐electrocyclization of imidazolium 2‐phosphaallylides are found to be smaller than those for their nonphosphorus analogues by ~3–5 kcal mol?1. There appears to be a good correlation between the activation barrier for intramolecular 1,5‐proton shift and the density of the negative charge at C8, except for the ylides having fluorine substituent at this position ( 7b and 8b ). The presence of fluorine atom reduces the density of the negative charge at C8 (in 7b it becomes positively charged) and thus raises the activation barrier. The ylides 7f and 8f having CF3 group at C8, in preference to the 1,5‐proton shift, follow an alternative route leading to different carbenes which is accompanied by the loss of HF. The carbenes Pr 7 , 8b – e resulting from intramolecular 1,5‐proton shift have a strong tendency to undergo intramolecular SN2 type reaction, the activation barrier being 7–28 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrazine‐borane and hydrazine‐diborane contain, respectively, 15.4 and 16.9 wt% of hydrogen and are potential materials for hydrogen storage. In this work we present the gas‐phase complexation energies, acidities, and basicities of hydrazine‐borane and hydrazine‐bisborane calculated at MP2/6‐311 + G(d,p) level. We also report the release of dihydrogen from both protonated complexes (ΔGhydrazine‐borane = ?20.9 kcal/mol and ΔGhydrazine‐bisborane = ?27.2 kcal/mol) which is much more exergonic than from analogues amine‐boranes. The addition of the first BH3 to the hydrazine releases 17.1 kcal/mol, and the second addition releases 15.8 kcal/mol. The attachment of BH3 also increases the N―H acidity of hydrazine by 46.3 kcal/mol. It was found that the B―H deprotonation leads to intramolecular rearrangement. The basicity values for hydrazine‐borane and ‐bisborane are 180 and 172.8 kcal/mol, respectively. For both complexes the protonation centres are located at the boron moiety. The protonated structure of hydrazine‐bisborane is cyclic and can be described as H2 captured between a negatively charged B―H hydrogen and positive boron (B―H??H2??B). Atoms in molecules analysis are used to investigate bond paths in concerning structures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Theoretical design on a new molecular switch and fluorescent chemosensor double functional device of aza‐crown ether (2,2′‐dipyridine‐embedded N‐(9‐anthraceneyl(pyrenyl)methyl)aza‐15‐crown‐5) was explored. The interactions between ligands and a series of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) were investigated. The fully optimized geometry structures of the free ligands ( L 1, L 2) and their metal cation complexes ( L 1/M2+, L 2/M2+) were calculated with the B3LYP/6‐31G(d) method. The natural bond orbital analysis, which is based on optimized geometric structures, was used to explore the interaction of L 1/M2+, L 2/M2+ molecules. The absorption spectra of L 1, L 2, L 1/M2+, and L 2/M2+, and their excited states were studied by time‐dependent density functional theory. A new type molecular device L 2(2,2′‐dipyridine‐embedded N‐(9‐pyrenyl methyl)aza‐15‐crown‐5) is designed, which not only has the selectivity for Sr2+, and construct allosteric switch, but also has fluorescent sensor performance.  相似文献   

17.
The effect of halogen‐substituent on hydrogen abstraction mechanisms was studied by applying density functional theory functional calculations to the gas‐phase reactions between CHCl?? and CH4 ? nXn (X = H, F, Cl; n = 0–3), and it is found that a heavier X substituent in the substrate results in a greater stabilization of corresponding complex, a lower activation energy, a faster H‐abstraction reaction, and greater exothermicity. However, CH4– reaction is more reactive than CH3F– reaction under the same condition because of dominant π‐donation from the electronegative F atom. We also explored the reactivity difference for the seven reactions in terms of factors derived from bond order, second‐order perturbative energy, and activation strain model analysis. The rate constants are evaluated over a wide temperature range of 298–1000 K by the conventional transition state theory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Single crystals of ammonium D , L ‐tartrate, a potential nonlinear optical (NLO) material of interest, were grown by the slow evaporation technique. The crystal structure was determined by single‐crystal X‐ray diffraction. Fourier transform infrared and Raman spectra of the crystallized molecule were recorded and analyzed. The geometry, intermolecular hydrogen bonding, first hyperpolarizability and harmonic vibrational wavenumbers were calculated with the help of B3LYP density functional theory method. The red shift of hydroxyl and NH4+ stretching wavenumbers indicate the formation of inter‐ and intramolecular hydrogen bonding. Simultaneous activation of CH stretching wavenumbers shows the presence of intramolecular charge transfer in the molecule. Natural bond orbital analysis was carried out to demonstrate the various inter‐ and intramolecular interactions that are responsible for the stabilization of this molecule, leading to high NLO activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


20.
Recently recorded 17O NMR spectra of compounds studied in a previous work (Taskinen E. Acta Chem. Scand. 1985; B39 : 489–494) dealing with the thermodynamics of isomerization of the enol ethers of α‐acetyl‐γ‐butyrolactone reveal an error in compound identification, caused by an unexpected isomerization reaction during the synthetic procedure. Thus, acid‐catalyzed treatment of the lactone with HC(OR)3 in the respective alcohol ROH is shown to lead initially to the desired enol ethers which, however, are gradually isomerized to a mixture of the enol ethers and an ester of 2‐methyl‐4,5‐dihydrofuran‐3‐carboxylic acid. As a result, only one of the two isomeric compounds detected in the previous equilibration study was the expected enol ether (the thermodynamically more stable E isomer) of α‐acetyl‐γ‐butyrolactone, while the other, dominating species was the respective carboxylic ester. In the present work, the evidence provided by the 17O NMR spectra is presented, and the relative stabilities of the isomeric compounds are discussed on the basis of computational enthalpy data. The treatment is also extended to the respective isomeric compounds derived from α‐acetyl‐δ‐valerolactone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号