首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential energy curves have been investigated for the 10 lowest quartet electronic states in the 2s+1Λ± representation below 30,000 cm?1 of the molecule CrCl via CASSCF and MRCI (singly and doubly excitation with Davidson correction) calculations. The harmonic frequency ωe, the internuclear distance re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent dipole moment μ have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points rmin and rmax have been calculated for the considered electronic states up to the vibrational level v = 19. Seven electronic states have been studied here theoretically for the first time. The comparison of these values to the theoretical results available in the literature shows a good agreement. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
The potential energy curves of the molecule NaRb have been calculated for the 60 low‐lying electronic states in the Ω‐representation. Using an ab‐initio method the calculation is based on nonempirical pseudo‐potential in the interval 3.0aoR ≤ 44.0ao of the internuclear distance. The spin‐orbit effects have been taken into account through a semiempirical spin‐orbit pseudo‐potential added to the electrostatic Hamiltonian with Gaussian basis sets for both atoms. The spectroscopic constants have been calculated for 42 states and the components of the spin‐orbit splitting have been identified for the states (1, 2, 5)3Π and (1, 2)3Δ. The comparison of the present results with those available in literature shows a good agreement, whereas the other results, to the best of our knowledge, are given here for the first time. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
4.
The potential energy curves have been investigated for the 12 lowest sextet electronic states in the 2s+1Λ(±)2s+1Λ(±) representation below 53,000 cm−1 of the molecule CrF via CASSCF and MRCI (single and double excitation with Davidson correction) calculations. Seven electronic states have been studied theoretically for the first time. The harmonic frequency ωe, the internuclear distance Re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent dipole moment μ have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv and the abscissas of the turning points Rmin and Rmax have been calculated for the considered electronic states up to the vibrational level v = 39. The comparison of these values to the theoretical and experimental results available in the literature shows a good agreement.  相似文献   

5.
An ab initio CASSCF and MRCI (single and double excitation plus Davidson correction) calculation have been performed for the molecule YBr. The potential energy curves of 20 electronic states in the representation 2s+1Λ(+/?) (neglecting the spin‐orbit effects) and 41 states in the representation Ω(+/?) [including the spin‐orbit (SO) effects] have been calculated along with the corresponding spectroscopic constants. The SO effects are taken into account via a semi‐empirical SO pseudo‐potential for the yttrium atom, while they have been neglected for bromine. Very good agreement is displayed by comparing the present results with those obtained experimentally, up to now, of the three states X1Σ+, (1)2Π, and (2)1Σ+. New results have been obtained for 17 states 2s+1Λ(+/?), and their SO components yet not observed or calculated. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
The potential energy curves have been investigated for the 23 lowest electronic states in the 2s+1Λ± representation of the molecule ScBr via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Seventeen electronic states have been studied theoretically for the first time. The harmonic frequency ωe, the internuclear distance re, and the electronic energy with respect to the ground state Te have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points (Rmin, Rmax) have been calculated for electronic states up to the vibrational level v = 32. The comparison of these values to the theoretical and experimental results available in the literature shows a good agreement. © 2007 Wiley Periodicalsm Inc. Int J Quantum Chem, 2008  相似文献   

7.
The potential energy curves of the molecular ion KRb+ have been investigated for the 60 lowest molecular states of symmetry 2Σ+, 2Π, 2Δ, and Ω = 1/2, 3/2, and 5/2. Using an ab initio method, the calculation has been done in a one active electron approach based on nonempirical pseudopotentials with core valence effects taken into account through parameterized l‐dependent polarization potentials. Using the canonicals functions approach a rovibrational study is done by calculating the eigenvalues Ev, the rotational constants Bv, the centrifugal distortion constants Dv (up to 135 vibrational levels), and the spectroscopic constants ωe and Be for the five electronic states (1)2Σ+, (3)2Σ+, (1)2Π, (1)Ω = 1/2, and (1)Ω = 3/2. No comparison of these values with other results is yet possible because they are given here for the first time. Extensive tables of energy values of Ev, Bv, and Dv are displayed at http://hplasim2.univ‐lyon1.fr/allouche . © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

8.
Theoretical investigation of the 18 lowest electronic states of the molecule ScI in the representation 2S+1Λ(±) has been performed via CASSCF and MRCI (single and double excitation with Davidson correction) calculations. To the best of our knowledge these calculated electronic states are the first ones from ab initio methods. Thirteen electronic states between 4,500 cm?1 and 21,000 cm?1 have been studied for the first time and have not yet been observed experimentally. The harmonic frequency ωe, the internuclear distance Re, the electronic transition energy with respect to the ground state Te, and the rotational constant Be have been calculated for the considered electronic states. By using the canonical functions approach the eigenvalues Eυ and the rotational constants Bυ have also been calculated for the six lowest‐lying electronic states. The comparison of these results with the theoretical and the experimental data available in the literature shows a good agreement. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
The low-lying electronic states of tetracyanoethylene (TCNE) and its radical anion were studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbital (ANO) basis sets. The results obtained yield a full interpretation of the electronic absorption spectra, explain the spectral changes undergone upon reduction, give support to the occurrence of a bound excited state for the anionic species, and provide valuable information for the rationalization of the experimental data obtained with electron transmission spectroscopy.  相似文献   

10.
白藜芦醇分子的转动惯量和电偶极矩   总被引:4,自引:0,他引:4  
通过分子轨道理论和杂化轨道理论推断出较稳定的白藜芦醇分子是平面型分子,然后根据白藜芦醇分子结构特点计算了该化合物的一种稳定异构体的转动惯量,用矢量合成法计算了其电偶极矩,为微波辅助白藜芦醇萃取理论研究提供转动惯量和电偶极矩的数据.  相似文献   

11.
By using the electronic wave functions obtained from an ab initio calculation, including the spin‐orbit coupling, the electronic transition moments have been investigated for two bound states of symmetry Ω = 1/2 and Ω = 3/2 of the molecular ion KRb+. Based on a canonical functions approach for the determination of the vibrational wave functions, the matrix elements have been calculated for the bound states considered for v = 0, 10, 20 with v′‐ v = 0, 1, 2, …, 6; by using the same canonical approach, the eigenvalues and abscissas of the corresponding turning points (rmin and rmax) have been investigated for these states that obtained from a theoretical ab initio calculation up to v = 105. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

12.
Using an ab initio method, the potential energy has been calculated for the 29 lowest molecular states of symmetries 2Σ+, 2Π, 2Δ for the molecular ion RbH+. The calculation is based on nonempirical pseudopotentials and parameterized ?‐dependent polarization potentials. Gaussian basis sets have been used for both atoms. The spectroscopic constants for 18 electronic sates have been calculated by fitting the calculated energy values to a polynomial in terms of the internuclear distance R. Through the canonical functions approach the eigenvalue Ev, the abscissas of the corresponding turning points (Rmin and Rmax) and the rotational constants Bv have been calculated up to 24 vibrational levels for the considered bound states. The comparison of the present results with those available in literature shows a very good agreement. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
14.
Molecular polarizabilities may be divided into either atomic contributions or bond contributions. The common way to estimate molecular polarizabilities is to assign atomic or bond parameters for each atom or bond type to fit experimental or quantum mechanical results. In this study we have taken a different approach. A general formula based on MM3 force constants and bond lengths was used to compute bond polarizabilities and molecular polarizabilities. New parameters for polarizabilities are not required. A fair agreement between experimental and computed molecular polarizabilities was obtained, with a RMS deviation of 0.82 Å3 (11.7%) and signed average error of 0.01 Å3 for a broad selection of 57 molecules studied. Two methods, the many‐body interaction and the pair‐interaction approaches, have been used to study induced dipole moments using the bond polarizabilities estimated from the new formula. The pair‐interaction approximation, which involves much less computation than the many‐body interaction approach, gives a satisfactory representation of induced dipole interaction. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 813–825, 2000  相似文献   

15.
By using CASSCF/MRCI methods, theoretical molecular calculations have been performed for 12 electronic states for AlBr molecule and 12 electronic states for AlI molecule in the representation 2s+1Λ (neglecting spin‐orbit effects). Calculated potential energy curves are displayed. Spectroscopic constants including the harmonic vibrational wave number ωe, the electronic energy Te referred to the ground state and the equilibrium internuclear distance Re are predicted for these singlet and triplet electronic states for both AlBr and AlI molecules. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
The potential energy surface (PES) for the CHF2CHO molecule in the excited S1 state is calculated by the CASSCF method. The features of the 1‐ and 2‐D cross‐sections of PES are considered in comparison with those of the relative molecules. The vibrational frequencies are calculated in harmonic approximation and the vibrational energy levels for the inversion motion of the carbonyl fragment CCHaO and for the torsion motion of the CHF2‐top are calculated in anharmonic approximation by the 1‐ and 2‐D variational methods. The calculated data are compared with the experimental ones. The problems of the experimental data interpretation are considered. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

17.
The KHe molecular system is extensively studied by multi-reference configuration interaction calculations. Potential energy curves are constructed for 20 lowest electronic states, and molecular parameters are extracted. A comparison of our results with previous works shows remarkable agreement. A further calculation of the dipole moment functions through a wide range of the internuclear separation is performed and their corresponding curves are presented. Charge transfer is detected from the change in the sign of these functions particularly for R < R e. Negative dipole moment values near R e are predicted for 3 excited states, (1)2Π, (3)2Σ+ and (1)4Π, which are of a relatively short-range strong-binding nature. On the other hand, weakly binding long-range excited states predict positive values of the dipole moment near R e reflecting the KHe+ polarity.  相似文献   

18.
The effect of solvation on the electronic structure of the ubiquitin protein was analyzed using the ab initio fragment molecular orbital (FMO) method. FMO calculations were performed for the protein in vacuo, and the protein was immersed in an explicit solvent shell as thick as 12 A at the HF or MP2 level by using the 6-31G* basis set. The protein's physical properties examined were the net charge, the dipole moment, the internal energy, and the solvent interaction energy. Comparison of the computational results revealed the following changes in the protein upon solvation. First, the positively charged amino acid residues on the protein surface drew electrons from the solvent, while the negatively charged ones transfer electrons to the solvent. Second, the dipole moment of the protein was enhanced as a result of the polarization. Third, the internal energy of the protein was destabilized, but the destabilization was more than compensated for by the generation of a favorable protein-solvent interaction. Finally, the energetic changes were elicited both by the electron correlation effect of the first solvent shell and by the electrostatic effect of more distant solvent molecules. These findings were consistent with the picture of the solvated protein being a polarizable molecule dissolved in a dielectric media.  相似文献   

19.
Ab initio multireference single‐ and double‐excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e+CaO, and e+SrO. The adiabatic dissociation limit for the 2Σ+ lowest states of the latter systems consists of the positive metal ion ground state (M+) and the OPs complex (e+O?), although the lowest energy limit is thought to be e+M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed‐shell X 1Σ+ ground states of both systems is found to lie in the 0.16–0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e+SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase as the temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号