首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of (NEt4)2[Re(CO)3Br3] with N‐heterocyclic thiols such as 2‐mercaptobenzimidazole (H2Sbenzim), 2‐mercaptothiazoline (HSthiaz), or 5‐mercapto‐1‐methyltetrazole (HSmetetraz) give rhenium(I) complexes of various compositions: (NEt4)[Re(CO)3Br2(H2Sbenzim)], [Re(CO)3(HSthiaz)3]Br, and (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2]. Corresponding reactions with 2‐mercaptopyridine (HSpy) and bis(2‐pyridine)diselenide [(Sepy)2] did not give defined products in reasonable yields, whereas [Re(CO)5Br] reacts with HSpy and (Sepy)2 with formation of [Re(CO)3(HSpy)3]Br and [Re2(CO)6(Sepy)2], respectively. All reactions were performed without the addition of a supporting base and the sulfur‐containing organic ligands are coordinated in their thione forms with the exception of Smetetraz in its μS‐bridging coordination mode in (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2], which can be regarded as thiolate. The bonding mode of the selenium containing ligands in the dimeric compound [Re2(CO)6(Sepy)2] (C–Se distance: 1.93 Å) can also best be described as selenolate. The products are stable on air at an ambient temperature. They were studied spectroscopically and by X‐ray diffraction.  相似文献   

2.
The pyrolyses of [NEt4][H2Re(CO)4] in boiling n-heptane, n-octane and n-nonane are described. Mixtures of polynuclear carbonyl- and hydridocarbonylrhenium species are obtained, the principal products being [Re4(CO)16]2?, [H2Re3(CO)12], [H3Re3(CO)10]2?, [H3Re3O(CO)9]2? and [H6Re4(CO)12]2?. A red-orange crystalline species was isolated from the reaction in n-heptane and shown by X-ray diffraction to be [Net4]2[HRe3(CO)12]. It gives orthorhombic crystals, space group Pbca, with cell constants a 16.07(1), b 23.39(2), c 19.49(1) Å. The structure was solved by Patterson and Fourier methods and refined by least-squares up to a final R value of 0.061, for 1303 independent counter data. The anion [HRe3(CO)12]2? contains an isosceles metal atom triangle, with two short edges of 3.014(3) and 3.018(3) Å and a long hydrogen-bridged edge of 3.125(3) Å.  相似文献   

3.
The synthesis of the novel compound (NEt4)2 [H4Re4(CO)13] and its characterization by IR, NMR and X-ray analyses are described. The dianion contains a tetrahedral metal atom duster bearing thirteen terminally-bonded carbonyl groups.  相似文献   

4.
The hydrogen tautomerism in the hydrido carbonyl cluster compound of rhenium [H4Re4(CO)15](NEt4)2 has been studied by analysis of the PMR spectra at different temperatures.  相似文献   

5.
Heterometallic Coordination Compounds Re2(μ-PPh2)2[mer-(CO)3]2-trans-[InX2(H2O)]2 and New Halogene Containing Three- and Four-Nuclear Rhenium Clusters from Reactions between Re2(μ-PPh2)2(CO)8 and InX3 (X = Cl, Br, I) In sealed glass tubes equimolar amounts of Re2(μ-PPh2)2(CO)8 and InX3 (X = Cl, Br, I) were reacted in the presence of xylene at 220°C to two types of products. The first type comprised the heterometallic coordination compounds Re2(μ-PPh2)2(CO)6[InX2(H2O)]2 (X = Cl, Br, I) (yield 60%), and the second halogene containing rhenium complexes Re33-H)(μ3-X)(μ-PPh2)3(CO)6 (unsaturated three-membered metal ring with 46 VE) and Re4(μ-H)(μ-X)(μ-PPh2)44-PPh)(CO)8 and additionally those substances as cis-IRe(CO)4(PPh2H), Re2(μ-PPh2)(μ-X)(CO)8 (X = Cl, Br), Re2(μ-I)2[μ-(PPh2)2O](CO)6 and Re4(μ-Cl)2(μ-PPh2)44-PPh)(CO)8 (four-membered metal ring with 66 VE with three Re? Re bonds) which have been observed in one or two of the three reaction systems. A proposal of the reaction course is discussed. The single X-ray analysis of Re2(μ-PPh2)2[mer(CO)3]2-trans[InI2(H2O)]2 · 2 Me2CO shows for the two fold phosphido bridged dirhenium molecular fragment with 34 VE a Re? Re bond of 294.6(1) pm. From two possible transpositions of both In? Re bond vectors, the one found advantageously has sterical reasons. The average In? Re single bond length is 271.1(1) pm. The corresponding determination of the unsaturated three-membered ring compound Re33-H) (μ3-Cl)(μ-PPh2)3(CO)6 showed three Re? Re bond lenghts of comparable size, of which the mean value of 281.9(1) pm was significantly shortened by π electron delocalization effect compared to that of a saturated phosphido bridged three-membered rhenium ring compound. As it was recognized by further comparison, the structural data of the common molecular fragments in the three examined three-membered rhenium ring clusters (X = Cl, Br, I) are not dependent on the different kind of halogeno ligand atoms. Finally, the crystal structure determination of the substance Re4(μ-H)(μ-Br)(μ-PPh2)44-PPh)(CO)8 shows the presence of square-pyramidal Re44-P) atomic arrangement, of which the planar basic plane has a sequence of up- and downwards orientated four diphenylphosphido bridging groups. The four measured Re? Re single bond lengths (mean value 302.7(3) pm change with the different kind of bridging atoms. The structural features observed are compared with those of a corresponding iodine derivative.  相似文献   

6.
NEt4[Re3Cl10(H2O)2] · 2 H2O ( 1 ) was obtained from hydrochloric acid solutions of ReCl3 and tetraethylammonium chloride, NEt4Cl, by isothermal evaporation as dark red crystals. 1 crystallizes in the orthorhombic crystal system, space group Pnma, Z = 4, with a = 1838,7(2), b = 1456.9(1), c = 972.08(7) pm, Vm = 391.81(6) cm3 · mol?l. The crystal structure consists of [Re3Cl10(H2O)2]? anions that are arranged in the fashion of a hexagonal closest-packing of spheres. These are held together by partially disordered NEt4+ cations and are bound into a hydrogen bonding system with the crystal water.  相似文献   

7.
Synthesis and Properties of Heteronuclear Metal Atom Clusters Re4(CO)123-GaRe(CO)5]4 and Re2(CO)8[μ-GaRe(CO)5]2 The title compounds were prepared by the reaction of gallium halides and dirhenium decacarbonyl. Crystals of the four-membered cluster Re2(CO)8[μ-GaRe(CO)5]2 gave at 3000C with aggregation of four Re atoms to an inner Re4 tetrahedron the product Re4(CO)12(CO)[μ3-GaRe(CO)5]4and with Ga2I3 shown by mass spectroscopic measurements the molecule ion Re4(CO)16+. In tetra-hydrofuran solution the cluster Re4(CO)123-GaRe(CO)5]4 and the hydride Li[C2H5)3BH] have formed the formyl complex Li4{Re4(CO)123 -GaRe(CO)4(CHO)] 4}, which was estimated by 1H n. m. r. and i. r. spectroscopic data. Both synthesized gallium rhenium carbonyl clusters were characterized by i.r. spectroscopic measurements. The comparison of these results with those of the structurally known indium rhenium carbonyl clusters led to proposals of the molecule structure of the analogous gallium rhenium compounds.  相似文献   

8.
The salts [NMe4]2[Ni5(CO)12], [NMe4]2[Ni6(CO)12], [NMe4]2[Ni12(CO)21H2] and [NEt4]3[Ni12(CO)21H] in acetone are efficient catalysts for the polymerisation of acetylene.  相似文献   

9.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

10.
The structure of the title compound, (NEt4)2[H4Re4(CO)15], is reported in two crystallographic modifications, I and II. Both forms axe monoclinic and the cell constants are as follows: I, a 11.355(2), b 21.204(4), c 17.416(3) Å, β 94.15(2)°, space group P21/c; II, a 21.831(4), b 17.584(3), c 11.446(2) Å, β 96.02(2)°, space group P21,/n. Two sets of 3042 (I) and 2870 (II) independent diffraction intensities, collected by counter methods, were used for the solution and refinement of the two structures. The final conventional R factors have values 5.5% (I) and 6.3% (II), respectively. The crystal packings are compared, showing different conformations of the (NEt4)+ cations. The anions contain a tetrametal cluster formed by an isosceles triangle plus an apically bound metal atom; the carbonyl groups are all terminally bonded to the rhenium atoms. Some differences, present both in the metal atom clusters and in the carbonyl dispositions, are discussed and compared with a third, previously reported, crystallographic modification of the same compound.  相似文献   

11.
The thermally stable solids Re2(CO)8[μ-InRe(CO)5]2 and Re4(CO)123-InRe(CO)5]4 could be obtained by treatment of In with Re2(CO)10 in a bomb tube. A mechanism of the formation of the latter cluster from the first one is proposed. Compared with Re2(CO)8[μ-InRe(CO)5]2, Re4(CO)123_InRe(CO)5]4 shows in polar solvents an unusual high stability, which can be explained by the higher coordination number of In with rhenium carbonyl ligands. Re4(CO)12-[μ3-InRe(CO)5]4 dissolves monomerically in acetone, where as Re2(CO)8[μ-InRe(CO)5]2 dissociates yielding Re(CO)5? anions. Single-crystal X-ray analyses of Re4(CO)123-InRe(CO)5]4 establish the metal skeleton. The central molecular fragment Re4(CO)12 contains a tetrahedral arrangement of four bonded Re atoms [ReRe 302.8 (5) pm]. The triangles of this fragment are capped with a μ3-InRe(CO)5 group each [InRe(terminal) 273.5 (7) pm; InRe (polyhedral) 281.8 (7) pm]. The bridging type of In atoms with the Re4 tetrahedron and the metal skeleton was realized for the first time. By treating Re4(CO)123-InRe(CO)5]4 with Br2 the existence of Re(CO)5 ligands could be proved by isolating BrRe(CO)5.  相似文献   

12.
The electronically unsaturated dirhenium complex [Re2(CO)8(μ‐H)(μ‐Ph)] ( 1 ) has been found to exhibit aromatic C?H activation upon reaction with N,N‐diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ‐H)(μ‐η1‐NEt2C6H4)] ( 2 ), [Re2(CO)8(μ‐H)(μ‐η2‐1,2‐C10H7)] ( 3 ), and [D6]‐ 1 , respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C?H bond‐activation process.  相似文献   

13.
(NEt4)2[Re(CO)3Br3] or (NEt4)2[Tc(CO)3Cl3] react with bis(2-pyridyl)phenylphosphine (PPhpy2) or tris(2-pyridyl)phosphine (Ppy3) under formation of neutral tricarbonyl complexes of the composition [M(CO)3X(L)] (M = Re, X = Br; M = Tc, X = Cl; L = PPhpy2 or Ppy3). In all isolated products, the ligands coordinate solely via two of their nitrogen atoms. All attempts to force a tripodal coordination of the phosphinopyridines failed. Removal of the bromo ligands from (NEt4)2[Re(CO)3Br3] by the addition of AgNO3 in THF/water, and subsequent reaction of the resulting [Re(CO)3(THF)3](NO3)with Ppy3 yielded the complex [Re(CO)3(NO3)(Ppy3-N,N′)] with a monodentate coordinated nitrato ligand. The products have been characterized spectroscopically and by X-ray structure analyses.  相似文献   

14.
[NEt4]2[Re(CO)3Br3] and [NEt4]2[Tc(CO)3Cl3] react with trimethylsilyltriphenylphosphoraneimine, Me3SiNPPh3, under exchange of the bromo ligands and the formation of cationic [M(CO)3(HNPPh3)3]+ complexes (M = Re, Tc). The required protons are abstracted from the solvent CH2Cl2. The steric bulk of the organic ligands causes a marked distortion of the established coordination polyhedra from an idealized octahedron with bond angles between neighbouring donor atoms between 81.81(8)° and 96.66(8)°. The reaction of [NEt4]2[Re(CO)3Br3] with Me3SiNP(Ph2)CH2PPh2 in CH2Cl2 yields the neutral complex [Re(CO)3Br{HNP(Ph2)CH2PPh2)], which contains a neutral, chelate‐bonded (diphenylphosphinomethyl)diphenylphosphoraneimine ligand. A similar reaction with the bifunctional phosphoraneimine Me3SiNP(Ph2)CH2(Ph2)PNSiMe3 gives only small amounts of a binuclear rhenium(I) complex of the composition [{Re(CO)3Br2}2(HNP(Ph2)CH2(Ph2)PNH)]2‐, whereas the major amount of the bis‐phosphoraneimine undergoes an intramolecular rearrangement to yield [H2NP(Ph2)NP(Ph2)CH3]Br. An X‐ray structure analysis shows a widespread delocalization of electron density over the central part of the cation.  相似文献   

15.
The reaction of Re2(CO)10 with E2(CF3)4 (E = P, As) yields the binuclear complexes Re2(CO)8[E(CF3)2]2 with two E(CF3)2 bridges. The complexes Re2(CO)8E(CF3)2I (E = P, As) and Re2(CO)8As(CF3)2Cl, containing two different bridges, are formed in the reactions of Re2(CO)10 with (CF3)2EI (E = P, As) and (CF3)2AsCl, respectively. A series of new binuclear complexes is obtained on substitution of iodine in the compounds Re2(CO)8E(CF3)2I (E = P, As) by SCH3, SCF3, SeCF3, P(CH3)2 and H. The binuclear complexes Re2(CO)8(E′CF3)2 having two E′CF3 bridges (E′ = S, Se) are obtained reacting Re(CO)5I With Hg(E′CF3)2. At room temperature the mononuclear complex Re(CO)5SeCF3 is obtained. Substitution of iodine in Re2(CO)8I2 by SCF3 also yields the symmetrical compound Re2(CO)8(SCF3)2; reduction with NaBH4 gives the binuclear hydride Re2(CO)8HJ. - IR and NMR spectra (1H, 19F) of the new complexes are reported and discussed.  相似文献   

16.
Interaction of the tetrahedral chalcocyanide cluster anionic complexes of Re, K4[Re4Q4(CN)12] (Q=S, Se, Te), with Ni2+ cationic complexes with polydentate amines, such as ethylenediamine (En), diethylenetriamine (Dien), or triethylenetetraamine (Trien) was used to synthesize six novel complexes: [Ni(NH3)4(En)][{Ni(NH3)(En)2}Re4Te4(CN)12] · 2H2O, [{Ni(En)2}2Re4Se4(CN)12] · 3.5H2O, [Ni(NH3)3(Dien)]2[Re4Se4(CN)12] · 5.5H2O, [{Ni(NH3)2(Dien)}2Re4Te4(CN)12] · 2.5H2O. [Ni(NH3)2(Trien)][{Ni(NH3)(Trien)}Re4Se4(CN)12] · 2.5H2O, [{Ni(Trien)}2Re4S4(CN)12] · 3H2O. The complexes were studied by single-crystal X-ray diffraction analysis.  相似文献   

17.
The reaction of Re2(CO)8(μ-C6H5)(μ-H), 1 with corannulene (C20H10) yielded the product Re2(CO)8(μ-H)(μ-η2-1,2-C20H9), 2 (65 % yield) containing a Re2 metalated corannulene ligand formed by loss of benzene from 1 and the activation of one of the CH bonds of the nonplanar corannulene molecule by an oxidative-addition to 1 . The corannulenyl ligand has adopted a bridging η2-σ+π coordination to the Re2(CO)8 grouping. Compound 2 reacts with a second equivalent of 1 to yield three isomeric doubly metalated corannulene products: Re2(CO)8(μ-H)(μ-η2-1,2-μ-η2-10,11-C20H8)Re2(CO)8(μ-H), 3 (35 % yield), Re2(CO)8(μ-H)(μ-η2-2,1-μ-η2-10,11-C20H8)Re2(CO)8(μ-H), 4 (12 % yield), and Re2(CO)8(μ-H)(μ-η2-1,2-μ-η2-11,10-C20H8)Re2(CO)8(μ-H), 5 (12 % yield), by a second CH activation on a second rim double bond on the corannulene molecule. The isomers differ by the relative orientations of the coordinated Re2(CO)8(μ-H) groupings. All new products were characterized structurally by single crystal X-ray diffraction analysis.  相似文献   

18.
Halogeno-Bridged Heteronuclear Metal Atom Clusters of the Three Types Re2(CO)4L2(μ-X)2(μ-Y) (L = (C6H5)3P; X = Br, I; Y = GaRe(CO)4ax-L), Re2(CO)6L2(μ-X) (μ-GaX2) (X = I), and Re3(CO)9L3 (μ-X)33-Y) (X = Cl) The title compounds of the both types Re2(CO)4L(μ-X)2(μ-Y) [L = (C6H5)3P; X = Br, I; Y = GaRe(CO)4ax-L] and Re3(CO)9L3(μ-X)33-Y) (X = Cl) were prepared by the reaction of GaX3 (X = Cl, Br, I) and Re2(CO)8(ax-L)2 in boiling mesitylene solution. The obtained substance Re2(CO)4L2(μ-I)2(μ-Y) and carbon monoxide gave the compound of the third type Re2(CO)6L2(μ-I)(μ- GaI2). The last-named single iodo-bridged dirhenium cluster could be therefore a precursor complex of the double iodo-bridged compound. The four diamagnetic substances were characterized by 31P n.m.r. spectroscopy and their molecular structures were acertained by X-ray measurements. The result of the single crystal X-ray analysis of Re2(CO)4L2(μ-Br)2 [μ-GaRe(CO)4ax-L], a bridged coordination octahedron pair with a common face, and that of the edge-bridged pair Re2(CO)6L2(μ-I)(μ-GaI2) each possessing a Re? Re bond are especially treated in the present work.  相似文献   

19.
《Polyhedron》2003,22(25-26):3383-3387
Three new octahedral rhenium chalcocyanide cluster compounds [CuNH3(trien)]2[Re6S8(CN)6] · 7H2O (1), [CuNH3(trien)]2[Re6Se8(CN)6] (2) and [CuNH3(trien)]2[Re6Te8(CN)6] · H2O (3) exhibiting ionic structures have been obtained by the diffusion of an ammonia solution of KCs3[Re6S8(CN)6] (for 1), K4[Re6Se8(CN)6] · 3.5H2O (for 2) or Cs4[Re6Te8(CN)6] · 2H2O (for 3) into a glycerol solution of CuCl2 · 2H2O in the presence of trien (trien=triethylenetetramine). The compounds have been characterized by single-crystal X-ray diffraction. All three compounds contain a cationic complex [CuNH3(trien)]2+ which was not described previously.  相似文献   

20.
Summary.  Palladium(II) complexes of the general formula PdCl2 (PR3)2 with PR3 = { P(OPh)3}, P(O-4-MeC6H4)3, P(O-2-MeC6H4)3, and PPh2(OBu) were reduced by NEt3 in chloroform or benzene to Pd(0) complexes Pd(PR3)4 and Pd(PR3)x(NEt3) 4−x . The same reaction performed in the presence of air gave CH3CHO or CH3CH2CHO when NPr3 was used instead of NEt3. Pd(P(OPh)3)4 reacted with benzyl bromide affording the oxidative addition product cis-PdBr(CH2Ph)(P(OPh)3)2. The reaction of PdCl2(P(OPh)3)2 with benzyl bromide was observed only in the presence of NEt3, and a dimeric complex of [PdBr(CH2Ph)(P(OPh)3)]2 was identified as the reaction product. Both benzyl complexes reacted fast with CO (1 atm) to form acyl complexes exhibiting ν(CO) bands at 1709 and 1650 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号